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1 Introduction to CHM372

1.1 What is Physical Chemistry?

Basic question: How do the basic principles of physics produce the familiar features of the world
around us?

PChem is typically divided into four broad categories:

1.1.1 Thermodynamics: Work and heat

Thermodynamics deals with the question of how much useful work can be produced by a given
physical or chemical process – and, conversely, how much will necessarily be lost as heat.

1.1.2 Kinetics: How fast does it go?

Kinetics deals with the question of how fast a given process occurs.

1.1.3 Statistical Mechanics: Microscopic to macroscopic

Statistical mechanics gives a microscopic interpretation to the macroscopic laws of thermodynamics
and kinetics.

1.1.4 Quantum Mechanics: The dreams stuff is made of

Quantum mechanics is the physics of the very small – it lays out the fundamental laws that govern
all systems at the microscopic level and, ultimately, give rise to the everything else.

In this course, we’ll work through the material “backwards”, starting with the more familiar (but
still difficult!) problems of thermodynamics and ending with the fundamental principles of quantum
mechanics.

1.2 Why Is Physical Chemistry So Hard?

Two reasons:

• The content is abstract. There will be many terms you’ve never heard of or can’t define
even if you have – work, heat, energy, entropy, enthalpy, free energy, Hamiltonian, partition
function, wave function, observable, etc.
Advice: Keep things grounded in reality! Each time a new abstract term is introduced, make
sure you have at least one concrete example you can reference to remind yourself what it means
physically.

• The teaching is lousy. To quote a famous physical chemist:

The nihilist attitude of jumping into a discussion of terms whose meaning never has
been explained obviously does not make sense in physical sciences. It has never been
openly advocated, yet it has been silently adopted by all writers in thermodynamics
without a single exception. – Otto Redlich [Rev. Mod. Phys. 40, 557 (1968)]

Advice: I’ll do my best! Philosophically, I’m much more concerned about concepts making
sense than about teaching you to solve specific problems. My goal is to introduce the (relatively
few) equations that you’ll really need to use thermodynamics in the future and to make sure
you understand what they mean.
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2 The Ideal Gas Equation of State

Today we’ll work through a (relatively) simple example of how relationships between macroscopic
properties can be derived from microscopic physical models.

2.1 Macroscopic Properties and Coarse-graining

First, let’s define some terms:

Microscopic quantities depend explicitly on the coordinates and velocities of individual fun-
damental particles (atoms, electrons, etc.) that make up a system.

Macroscopic quantities (e.g., pressure, volume, and temperature) are derived by coarse-
graining (i.e., averaging) over microscopic quantities.

What exactly is coarse-graining? Coarse-graining refers to the process of representing a compli-
cated system in a simplified way, usually by taking averages over some properties that you aren’t
particularly interested in. Paintings by Claude Monet provide a great example of coarse-graining.

By Claude Monet - the-athenaeum.org [1], Public Domain, https://commons.wikimedia.org/
w/index.php?curid=5749305

When viewed from a distance, the picture looks realistic. But when we zoom in on a small patch,
it looks like nonsense. This is because Monet’s style coarse-grains over the finer details of the scene
in order to present a desired “impression”, i.e., to keep the viewer from getting lost in the details.

This is almost exactly what we do in physics: we usually don’t have access to all microscopic
degrees of freedom in a system and, even if we did, we’d get hopelessly lost trying to keep track
of them all. Instead, thermodynamics deals with those coarse-grained, average properties that are
both accessible and interesting in everyday processes.

2.2 The Ideal Gas

As an example of how this coarse-graining process works, let’s consider a very simple model: the
ideal gas. Specifically, we’ll consider a gas of monatomic particles that don’t interact with each
other.

8
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2.2.1 Setup

At a microscopic level, the dynamics of each particle is governed by its Hamiltonian1 or energy
function.

The Hamiltonian of a material system is its energy function, i.e., a mathematical function
that describes its energy as a function of the coordinates and velocities (or momenta) of all
particles in the system.

For a single particle of a monatomic gas, the Hamiltonian takes the form

h =
mv2

2
+ u(x, y, z). (1)

Here v represents the velocity of the particle,

mv2

2
=
m
(
v2
x + v2

y + v2
z

)
2

(2)

is its kinetic energy, and u(x, y, z) is its potential energy as a function of its three Cartesian coor-
dinates x, y, z. Since the gas particles don’t interact with each other, the potential energy depends
only on the interactions of the particle with the walls of the box. To simplify the calculations, we’ll
assume that

• The box is rectangular, with dimensions Lx (length), Ly (width), and Lz (height).

• The potential energy of each particle is zero until it hits one of the walls. From there, the
potential energy increases linearly, gradually repelling the particle until it bounces back off the
wall.

2.2.2 Microscopic Dynamics

For example, take the left wall of the box to be located at position x = 0. When a particle reaches
the coordinate x = 0, it begins to interact with the wall with energy

u(x) = −fox, x ≤ 0. (3)

Let’s see what effect this has on the particle’s dynamics.
According to Newton’s laws of motion, a particle moving in one direction feels an acceleration

a = d2x
dt2 directly proportional to the force F induced by its potential energy function

F = ma = −∂u(x)

∂x
. (4)

In the interior of the box, u(x) = 0, so F (x) = 0 and a = 0. When interacting with the wall,

a =
F

m
=
fo
m
, (5)

i.e., the particle feels a constant acceleration in the +x direction that eventually pushes it back away
from the wall. More specifically

d2x

dt2
=
fo
m

(6)

1Named for William Rowan Hamilton, Irish Mathematician, physicist, and inventor of the quaternions used in
video-game graphics engines and a whole bunch of other cool stuff.
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or

dvx
dt

=
fo
m
. (7)

If the particle is initially moving (to the left, i.e., toward negative x) with x-component velocity −vo
and begins to interact with the wall at time t = 0 (i.e., vx(t = 0) = −vo and x(t = 0) = 0), then

vx = −vo +

∫ t

0

dτ
dvx
dt

= vo +
fo
m
t. (8)

Since dx
dt = vx, we further obtain

x(t) =

∫ t

0

dτ vx(τ) =
fot

2

2m
− vot x ≤ 0. (9)

Note that this solution is valid only for x ≤ 0 since outside of this interaction zone the particle feels
no force and our starting equation for the acceleration is no longer valid.

Notice also that x(0) = 0 is one possible solution to the equation; this reflects the initial conditions
that the particle begins to interact with the wall at t = 0. At first the −vot term dominates the
expression, indicating that the particle is continuing to move left; the value of x becomes negative

as the particle enters the wall’s interaction zone. For larger values of t, however, the positive fot
2

2m
term begins to dominate, so that the particle begins to move back out of the wall. Eventually, the
value of x(t) reaches zero again, indicating that the particle has stopped interacting with the wall;
from this point, it proceeds to move with constant velocity until it runs into another wall.

At what time does the particle leave the wall’s interaction zone? Our equation for x(t) has two
solutions to x(t) = 0. From the quadratic formula:

t =
m

fo

(
vo ±

√
v2
o

)
=

{
0

2mvo
fo

.
(10)

Thus at the interaction time

τbounce =
2mvo
fo

(11)

the particle leaves the wall’s interaction zone and proceeds back out into the free space of the box.
From here it travels again at velocity vo (now in the +x direction) until it hits the opposite wall
after a free travel time of

τfree =
Lx
vo
. (12)

Note that this analysis of the x-component motion is completely independent of and analogous
to the motion in the y and z directions. Parallel statements hold for interactions with the right wall
of the box, as well as interactions with the top, bottom, front, and back.

2.3 Equation of State

What may come as a surprise now is that this microscopic analysis suffices to completely determine
the macroscopic properties of the gas. For example, suppose we want to calculate the average
pressure exerted on the walls of the container by the gas of particles. The pressure is simply the
average force per unit area exerted by the particles on the walls of the container.

As it turns out, this average force is easy to calculate, within some very reasonable assumptions.
First, assume that the positions and velocities of the gas particles are completely random within the
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box. (We don’t need at this point to know what the velocity distribution is, just that the distribution
is isotropic, e.g., that the particles are just as likely to move left as right.) Note that each particle
completes a round-trip across the box in time

τtot = 2τbounce + 2τfree. (13)

If the box is very large, τfree � τbounce, so we can approximate

τtot ≈ 2τfree. (14)

On average, then, the fraction of the time that the particle spends interacting with the wall is

χbounce =
τbounce

2τfree
=

mv2
o

Lxfo
. (15)

The average force a single particle exerts on the left wall is then

f1part = foχbounce =
mv2

o

Lx
. (16)

The average force exerted by all particles is then

favg =
mN

〈
v2
x

〉
Lx

, (17)

where N is the number of particles in the box, and the notation
〈
v2
x

〉
means that an average is taken

over the x-velocities of all particles in the box. Since the area of the left wall is simply Ly · Lz, the
pressure is then

P =
favg

LyLz
=
mN

〈
v2
x

〉
LxLyLz

. (18)

Now, the quantity in the denominator of this expression is simply the box volume. The quantity
in the numerator is closely related to another important thermodynamic parameter: the macroscopic
energy.

The energy U of a macroscopic system is the average value of the microscopic Hamiltonian for
the entire system.

For the ideal gas, the Hamiltonian for each individual particle is identical, and the average energy
of the system is just

U = 〈h〉 ≈ 3N

2
m
〈
v2
x

〉
, (19)

The approximation here is from dropping the (usually small) contribution of the wall potential
u(x, y, z), while the factor of 3 comes from summing up the contributions from the x, y, and z
velocities. (Since the particles move in random directions, the vy and vz terms add contributions
identical in value to the

〈
v2
x

〉
term.) Putting these results together, we obtain

P =
mN

〈
v2
x

〉
V

=
2

3

U

V
. (20)

Rearranging, this result is often stated as

U =
3

2
PV. (21)

Thus we can calculate the energy of an ideal gas (and thus its average particle speed) from the
product of its pressure and volume.
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3 Thermodynamic Work and Reversibility

3.1 Definitions

In its original context, thermodynamics was all about work. How could you maximize the amount
of useful work you could get out of a given system? Exactly how much could you get out anyway?

Historically, “work” was easy to define. In mechanics, work is usually defined as a force exerted
over a distance:

W =

∫ x2

x1

F (x)dx. (22)

In modern thermodynamics, things are a little more complicated. Sometimes we talk about electrical
work or chemical work, neither of which is easy to think of directly as “a force exerted over distance.”
More generally, we would say that:

Work performed on a system is any change in the system energy caused by displacement of a
macroscopic coordinate.

To understand what that means, it will be helpful to look at a few examples.

3.2 Examples

• Pressure-Volume (PV) work: Here the force is Pressure and the coordinate is volume. (NB:
Technically, P should be multiplied by area to have units of force, and V should be divided by
area to give units of distance; but in the product these factors cancel.) In equations:

dW = −PdV. (23)

Note the minus sign, indicating that (in our convention) the work performed on the system is
positive when the system is compressed.

• Electrical Work: Work performed by moving a charge against an electric field E. Here the
field represents a force, and the position of the charges represents the coordinate. In equations:

dW = QE · dx. (24)

• Chemical Work: Work performed by changing the chemical composition of a system. Here
the coordinate might be the mole fraction of a certain chemical component or the total number
of moles in the sample. The force is something called the “chemical potential” that we’ll
describe more completely later in the course.

• Gravitational work: Work performed by displacing an object against the force of gravity.
Here the force is gravity, and the coordinate might be the height of the object above the earth.

3.3 Units

3.3.1 Fundamental Units

In this class, we’ll use the SI system which uses the fundamental units

• kilograms (abbreviated kg) for mass

• meters (abbreviated m) for length

• seconds (abbreviated s) for time

• Kelvins (abbreviated K) for temperature.

The remaining units we encounter will (for the most part) will be derived from these.
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3.3.2 Force

The SI unit of force is the Newton (abbreviated N):

N = kg m/s2. (25)

If this jumble of units looks confusing, think about the force exerted by gravity on an object. Unless
opposed by some other force, gravity tends to accelerate objects, i.e., to increase their velocity toward
earth. Acceleration has SI units of m/s2 since it reflects how fast velocity (m/s) changes per unit of
time (s). The force exerted on an object by the force of gravity is just

Fgrav = mg (26)

where m is the object’s mass and g is the constant (at the earth’s surface) acceleration due to gravity
g ≈ 9.8 m/s2. So the force due to gravity has units “mass times acceleration” or “mass times velocity
per unit time”:

kg(m/s2) = kg m/s2 = N. (27)

3.3.3 Work

Work has the same units as energy, reflecting the fact that work performed on a system increases
its energy, and that work performed by a system decreases its energy. In SI units, energy and work
have units of Joules (abbreviated J):

J = kg m2/s2. (28)

If you have trouble remembering these units, think again in terms of work performed by the force
of gravity. The work performed when an object falls through a very small distance dx looks like

dWgrav = mg dx (29)

which has units of

kg
(
m/s2

)
m = kg m2/s2 = J. (30)

So you can think of work units as “mass times acceleration times distance.”

3.3.4 Pressure

As we saw in the ideal gas example, pressure is a measure of force per unit area. So the units of
pressure will be “force per area” or “work over distance over area”:

N

m2 =
J/m

m2 = J/m3 = kg/(m s2) ≡ Pa, (31)

where the symbol Pa stands for the SI name Pascal given to this fundamental unit of pressure. Note
that this can also be expressed as “energy per volume”. Physically, this suggests (correctly) that
pressure can be though of as an “energy density” for PV work: The pressure tells you how much
capacity the system has to perform PV work in each unit of volume.

For reference, standard atmospheric pressure (sometimes defined as a unit of pressure, atm, in
its own right) is equal to approximately 105Pa:

1 atm = 101, 325 Pa. (32)
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Example: PV Work

Problem: Let’s say we have a cylinder of gas capped by a piston, kept at (standard) atmo-
spheric pressure. How much work is performed on the system if we heat up the gas, caus-
ing it to expand from a volume of 1 L to 2 L? (Recall that one L is equal to 1000 cm3 or
1000 · (0.01m)3 = 10−3m3.)

Solution: The work performed on the system is just

W = −P∆V = − (101325 Pa) (2 L− 1 L) = −101325 Pa L

= − (101325 Pa) ·
(
10−3 m3

)
≈ −101 J. (33)

Note that the work is negative, indicating that the system energy is lowered by the expansion.
Conversely, the work performed by the system would be just the opposite, i.e., +101 J.

3.4 Definition and Reversibility

A core question that’s easy to overlook in discussing processes like gas expansion is the question of
whether the quantities we’re dealing with are even well-defined. For example, in the last example,
we stated that the pressure of the system was held constant at atmospheric pressure. But in real
life this isn’t always easy to do.

Consider the two heating processes illustrated in the figure below. In the left panel, the gas is
heated by a single bunsen burner; because the gas is heated slowly, the pressure in the piston stays
uniform at all times. As the gas near the bottom of the piston gets heated by the flame, it has plenty
of time to mix and diffuse with the gas near the top of the cylinder, keeping a uniform pressure and
temperature throughout. In this case, the analysis we just completed would be perfectly appropriate.

In the right-hand panel, the gas is heated rapidly by a much stronger, hotter flame. If the heating
takes place fast enough, the gas near the bottom of the container gets heated more rapidly than it
can diffuse and mix with the gas at the top of the cylinder. In this case, a temperature and pressure
gradient is established inside the cylinder. Neither the temperature nor the pressure are well-defined
quantities. In this case, it would be meaningless to try to calculate the work performed using our
usual dW = −PdV formula because the pressure of the gas it itself no longer even well-defined!2

This “definition” problem is closely related to the concept of reversibility. In thermodynamics:

2Very often we try to “cheat” a bit in problems like this and assume that the pressure outside the box is well-defined
even if the pressure inside the box is not. Depending on the actual construction of our device (and the efficiency with
which the gas outside the box is circulated), this may or may not be a valid approach.
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A reversible process is one in which the system and surroundings are kept arbitrarily close to
equilibrium with each other at all times.

This definition assumes a working knowledge of another important term in thermodynamics:

An equilibrium system is one whose macroscopic properties do not change with time, no
matter how long the system is observed.a

aStrictly speaking, we should add also that an equilibrium state must robust against perturbations; it’s
possible to have quasi-stable states that don’t change as long as they’re left alone but which can be induced to
transition irreversibly to other states by even the slightest perturbations. A simple example is a round boulder
balanced at the very top of a tall hill. Such states are not considered to be true equilibrium states.

Both of these definitions are very much idealizations: real processes are never reversible, and real
systems are never truly at equilibrium! They are, however, very useful approximations to real
processes and real states.

For example, although the gas cylinder is clearly not really in equilibrium with the flame in
either frame of the figure, it is much closer to equilibrium in the single-burner case. (In the multi-
burner case, the cylinder isn’t in equilibrium with itself, let alone its environment!) An even closer
approximation to a reversible heating process would be obtained by heating the cylinder very slowly
with a hotplate whose temperature is turned up gradually so that at all times it is kept only slightly
higher than that of the cylinder. Similarly, if the flame were turned off and the cylinder allowed to
cool down to room-temperature, it would not really be in equilibrium since eventually the oxygen
and moisture in the surrounding air would corrode the walls of the cylinder and the whole apparatus
would fall apart. But that process would happen over many years; over a very long time scale (relative
to the heating and cooling of the gas), the system could effectively be said to be in equilibrium.

How is reversibility related to the “definition” problem that opened this section? Well, note first
that a reversible process will always have well-defined properties. If the system is arbitrarily close
to equilibrium at all times, its macroscopic properties must be arbitrarily well-defined! Conversely,
a process in which all components have well-defined properties is also usually reversible. Irreversible
processes (i.e., processes that are not reversible) virtually always end up leaving some macroscopic
quantity poorly defined since the rapidity with which the transformation takes place prevents equili-
bration of the macroscopic properties. Since all real-world processes are to some extent irreversible,
this term is sometimes used interchangeably with the word spontaneous.
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4 Heat and Temperature

4.1 What is Heat?

Historically, thermodynamics has primarily been concerned with understanding the interplay be-
tween work and heat – in particular, with how heat can be used to perform work. You probably
already have a pretty good intuition for what these two terms mean. Making that intuition precise,
however, can be a little challenging. As described by H. S. Robertson:

“Historically, the distinction between heat and work was made for entirely practical
reasons and without any very consistent or objection-free prescription for distinguishing
the two. Heat was transferred to a boiler by building a fire under it, and work was
extracted from the steam engine via a movable piston, clearly and without subtleties,
doubts, or confusion. The realization of the true nature of the distinction between
heat and work has been rather slow in arriving, and the logical structure of the subject
has suffered because authors have attempted distinctions based on spurious reasoning
or circular definitions.” – Harry S. Robertson Statistical Thermophysics, Prentice-Hall
Inc., (1993) pg 61.

How would you define heat?
In this course, we’ll define heat by what it is not :

Heat is the transfer of energy into or out of a system by any process that cannot be identified
as macroscopic work.

Note carefully here that the term heat always refers to the transfer of energy from one system to
another. Unlike energy, we don’t consider heat to be a fundamental property of an object. The
reason is that, as we’ll see in the next lecture, energy transferred into a system as heat can be
transferred out of the system in other forms, i.e., as work. Thus it doesn’t make sense to speak of
the “heat” of an object, since the amount of heat that can be released from an object depends very
much on how the object is treated.

Example: Heating an Ideal Gas at fixed Volume

Problem: Suppose we heat an ideal gas in a closed cylinder at a fixed volume of 1 L. If during
the heating process the pressure of the gas increases from 1 atm to 2 atm, how much heat was
added to the system?

Solution: Since ∆V = 0, the change in system energy is due entirely to the heat that enters
the system. So to calculate the heat, we need only to calculate the change in energy. From
relation (21), we can calculate

∆U =
3

2
(P2 − P1)V =

3

2
(1atm) (1L) ≈ 152 J. (34)

4.2 Temperature: The Ideal Gas Scale

You may be surprised that we so far haven’t used the words “thermal” or “temperature”. In
fact, “thermal energy” is often used interchangeably with “heat” to describe the transfer of energy
through means other than work. The reason we’ve avoided these terms is that they’re often difficult
to define quantitatively. In fact, “thermal energy” is used by different textbooks to refer to different
quantities; for this reason, we’ll try to avoid using it here for technical purposes.
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The status of the term “temperature” is a little better; although different books do indeed
define temperature differently, they usually end up meaning the same thing. For practical purposes,
the temperature is usually defined by reference to how some easily measured physical property
of a system changes when heat is added to it. For example, in a glass thermometer, the measured
temperature corresponds to how much the volume of an enclosed pillar of mercury or alcohol increases
as it is heated. In principle, any physical property that varies systematically with the addition or
subtraction of heat could be used to define a temperature scale, but by convention all such scales
are standardized to each other to avoid confusion.

Conceptually, the ideal gas temperature scale is perhaps the easiest to understand. Experimen-
tally, it has been observed that gases at very low concentrations really do (almost!) follow the
idealized equation of state Eq. (21). As we saw in the example above, this means that when an ideal
gas is heated at fixed volume, the pressure changes as

∆P =
2

3

∆U

V
=

2

3

Q

V
. (35)

Here Q represents the amount of heat added to the system, which is equal to the total energy change
since no work can be performed at constant volume.

This relationship suggests a very simple temperature scale, one that is directly proportional to
the pressure of some fixed quantity of gas in a fixed volume, i.e.,

T ∝ P. (36)

To satisfy the intuitive notion that temperature should directly reflect the energy of the gas, we can
go further: by choosing

T ∝ PV, (37)

we ensure that (for the ideal gas) T is directly proportional to the energy. Finally, to satisfy our
intuitive notion of the temperature, we want to make that it’s an intensive property like pressure –
one that doesn’t scale with the size of the system. In other words, if we put double the quantity of
gas in a container of double the volume but with the same pressure, the energy should also double
– but the temperature should stay the same. We can accomplish this by dividing by the number of
moles of gas in the system:

T ∝ PV

n
. (38)

Finally, we choose a proportionality constant R−1 and define

T ≡ PV

nR
. (39)

In this construction, the value of the constant

R ≈ 8.314 J/(mol K) (40)

defines the value of the temperature T . Rearranging this relationship, we obtain the familiar ideal
gas law:

PV = nRT. (41)

Note that this likewise implies that

U =
3

2
nRT, (42)

showing that the energy of the ideal gas depends only on the temperature and not (independently)
on its volume or pressure.

In our discussion, we briefly encountered one of a pair of new concepts:
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Extensive properties scale with system size. If you were to combine two identical systems to
make one larger system, the extensive properties of each system would double.

Intensive properties do not scale with system size. If you were to combine two identical
systems to make one larger system, the intensive properties would be unchanged.

For example, n and V are extensive properties, while T and P are intensive properties. Although this
distinction won’t play as central a role in our development of thermodynamics as in some treatments,
we certainly haven’t encountered it for the last time.

4.3 Absolute Zero

One of the most interesting consequences of the ideal gas equation PV = nRT is that it implies
that the product PV tends to zero as T → 0. And, indeed, for sufficiently low pressures, real gases
actually do exhibit this behavior (see Figure 2.3, page 76 in the textbook). Since P and V can clearly
never be negative, this seems to suggest that the point T = 0 in our temperature scale defines an
absolute minimum temperature, below which no substance can ever go. Of course this is something
of a speculation since even at very low pressures real gases eventually start to deviate from the ideal
gas scale when the temperature goes low enough. As it turns out, though, the speculation turns
out to be correct: The absolute zero temperature defined by the ideal gas scale (−273.15o C) really
does set a lower bound on attainable temperatures in the real world. We’ll examine this idea more
closely when we reach the Third Law of Thermodynamics.

4.4 Heat Capacity

You probably know from experience that it’s easier to heat some objects than others. There are
actually two factors at play in the “easiness” of heating:

The Heat Capacity of a substance characterizes how much heat must be added to bring about
a particular change in temperature.

The thermal conductivity of a substance characterizies how quickly heat flows over a given
distance through the material.

One of these properties is extensive, and the other is intensive. Which one is which? Do you know
what property is defined by dividing this extensive property by the number of moles in the sample?3

In thermodynamics, it’s often useful to distinguish between two different types of heat capacity:
at constant volume and constant pressure. In equation form

CV ≡
dQ

dT

∣∣∣∣
V

(43)

CP ≡
dQ

dT

∣∣∣∣
P

. (44)

Here the subscript indicates which quantity is held constant during the heating (or cooling) process.
Although these two quantities are usually almost the same for solids and liquids they can be very
different for gases which expand dramatically when they’re heated.

3Answer: The Specific Heat Capacity or often just Specific Heat C̄V = CV
n

.
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5 The First Law: Energy is Conserved

5.1 Introducing the First Law

If you’re familiar with any of the “laws of thermodynamics,” you most likely know the first one, in
some form or another. There are several equivalent statements of the law, but most boil down to
the following:

First Law of Thermodynamics

Energy can neither be created nor destroyed. It can only be converted between heat and work.
Mathematically

∆U = Q+W, (45)

where Q represents the amount of heat entering a system, and W represents the work performed
on the system.

Note that in this statement the quantities Q and W may both be negative: a negative heat “entering”
the system means that heat has actually left into the environment, while negative work “performed
on” the system means that the system has actually performed work on the environment.

5.2 Universal Principle or Cheap Cop-out?

If you’re watching closely, you may have noticed that, in terms of logical structure, we’ve just fallen
for one of the classic blunders: a circular definition! Recall that we defined heat itself to be any
energy change not attributable to macroscopic work. In other words, we defined

Q ≡ ∆U −W. (46)

Our first “law” thus follows directly from this definition by simply moving the work term W to the
other side of the equation! At this point, you might be suspicious that you’ve been duped. Why do
we call this a “law” if it follows trivially from our definition of heat?

5.3 Historical Perspective: Energy as a State Function

You’re right to be suspicious, but the reasoning isn’t quite as malicious as it might appear. Recall
from Lecture 4 the quote by Harry S. Robertson explaining that, historically, heat and work were
were distinguished “for entirely practical reasons” through processes like heating and cooling a boiler
or extracting work from a steam engine, without any “subtleties, doubts, or confusion.” In other
words, the definitions of “heat” and “work” were taken to be self-evident. It was thus a perhaps
somewhat surprising – and tremendously significant – observation that, regardless of how a system
was manipulated, the sum total of the heat and work entering a system was always opposite to the
sum total of the heat and work leaving it. It thus became clear that, although heat and work could
be interchanged – i.e., heat could be used to produce work and work could be used to produce heat
– the sum of the two together was something immutable: what we now call energy.

The modern statement of this distinction between quantities like work and heat (that are in
some sense inter-convertible) and those like energy (that are immutable) is that the latter are state
functions, whereas the former are not. To be precise with our words here:

A state function is a physical quantity that depends only on the current state of a system
and not on its history.
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For example, the energy stored in a pot of boiling water is the same regardless of whether the water
was heated over a gas range or stirred so vigorously with an egg beater that the temperature begins
to rise.4 If the final state of the water is the same (defined by the temperature, pressure, and
volume), then the energy is the same.

In contrast, heat and work are not state functions: how much heat or work is produced in a
process depends very much on the details of how that process is conducted. In its early days,
thermodynamics was very much concerned with how one could most efficiently produce work by
running some working material (e.g., the steam in a steam engine) through a cyclic process of
heating and cooling. In this context, the realization that energy was a state function – and thus
the steam would always contain the same amount of energy at the ending point of each cycle – was
hugely important.

5.4 Applying the First Law

Since we’ve already defined heat in terms of the energy change to a system, the first law may seem
like a bit of a conceptual let-down. But as a book-keeping tool for practical calculations, it has great
value. “Follow the energy” turns out to be a great strategy for many thermodynamics problems.
We’ll see how this works in a series of examples that will be useful in our next lecture.

An adiabatic process is one in which no heat is exchanged with the environment.

Example: Ideal Gas Adiabatic Expansion (Pressure)

Problem: Suppose we have a volume V1 of ideal gas at a pressure P1 and (by very slowly
decreasing the external pressure) we allow it to expand reversibly and adiabatically to a new
volume V2. What will be the final pressure of the gas?

Solution: What’s happening to the energy in this system? Since the process is adiabatic, no
heat is exchanged; according to the first law, the only energy change in the system must come
from the work performed:

dU = dW = −PdV. (47)

But from the ideal gas law [Eq. (21)], we also know that

dU =
3

2
d (PV ) . (48)

This gives us a relationship

3

2
d(PV ) = −PdV (49)

between differentials of the pressure and volume. Now, the differential of a product like PV is
obtained from the product rule as

d(PV ) = PdV + V dP (50)

4Yes, this is possible; in the early days of thermodynamics, something very much like this was a critical demon-
stration of the equivalence between heat and work.
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so that

3

2
(PdV + V dP ) = −2

2
PdV (51)

→ 5

2
PdV = −3

2
V dP (52)

→ 5

3

dV

V
= −dP

P
. (53)

Integrating both sides gives

−5

3
ln
V2

V1
= ln

P2

P1
(54)

or exponentiating each side and solving for P2:

P2 = P1

(
V1

V2

) 5
3

. (55)

Example: Ideal Gas Adiabatic Expansion (Temperature)

Problem: What is the final temperature of the gas in the last problem?

Solution: From the last problem we know that

P2 = P1

(
V1

V2

) 5
3

. (56)

From the ideal gas equation of state [Eq. (41)] we also know that

P2 =
nRT2

V2
. (57)

Combining the two equations, we obtain

nRT2

V2
= P1

(
V1

V2

) 5
3

(58)

or

T2 =
P1V2

nR

(
V1

V2

) 5
3

= T1

(
V1

V2

) 2
3

. (59)

Example: Ideal Gas Adiabatic Expansion (Work)

Problem: How much work is performed on the system during the adiabatic expansion just
described?
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Solution: Eq. (42) tells us that the final energy of the gas is just

U2 =
3

2
nRT2. (60)

Likewise, the initial energy is

U1 =
3

2
nRT1 =

3

2
P1V1. (61)

Since the process is adiabatic, the difference of these two energies is exactly the amount of work
performed on the gas, i.e.,

W = ∆U =
3

2
nR (T2 − T1) (62)

=
3

2
nRT1

((
V1

V2

) 2
3

− 1

)
. (63)

Example: Ideal Gas Isothermal Expansion (Pressure)

Problem: Suppose we have a volume V1 of ideal gas a pressure P1 and we allow it to expand
reversibly and isothermally at temperature T to a new volume V2. What will be the final
pressure of the gas?

Solution: In this case, the energy changes due both to the work performed by the system
and the heat that enters to maintain the temperature. Since both the volume and temperature
of the final state are specified, we can calculate the pressure directly. The ideal gas equation
gives for the initial system

nRT = P1V1. (64)

and for the final system

P2 =
nRT

V2
= P1

V1

V2
. (65)

Thus we can calculate the final pressure from only the initial pressure and the initial and final
volumes. This relationship is often stated as

P1V1 = P2V2, (66)

a relationship that is valid only for isothermal processes for a fixed quantity of ideal gas.

Example: Ideal Gas Isothermal Expansion (Heat)

Problem: In the last example, how much heat is added to the gas during the expansion?
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Solution: To calculate the heat, we again apply the first law:

∆U = Q+W (67)

→ Q = ∆U −W. (68)

If we can calculate independently both ∆U and W , we can thus calculate the heat Q.
Calculation of the energy change turns out to be trivial: because the ideal gas energy is

directly proportional to temperature, ∆U is exactly zero for an isothermal process! Thus the
heat added to the system is exactly the inverse of the work performed on the system:

Q = −W =

∫ V2

V1

PdV (69)

= P1V1

∫ V2

V1

dV

V
(70)

= P1V1 ln
V2

V1
(71)

= nRT ln
V2

V1
. (72)
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6 The Carnot Engine: Heat Engine Efficiency

6.1 Heat Engines

We’ve stated several times that traditional thermodynamics was deeply concerned with the transfor-
mation of heat into useful work. In this lecture, we’ll begin to see how the concepts we’ve developed
can provide useful information on how – and how efficiently – such transformations take place.

Before we get “into the weeds” of how this works, let’s do some big-picture thinking about how
heat-work transformation happens. What basic inputs do you need?

• The first point is pretty easy: you need a source of heat! In a car engine, this is provided
by igniting a gasoline/air mixture that combusts to produce a hot gas. In a steam engine, it’s
the coal fire that heats the boiler.

• The second thing you need is a working substance, i.e., the thing that gets heated by the
source. In the car engine, the heat source and the working substance are in some sense the
same thing – the explosion of the gasoline/air mixture creates a new gas of water and CO2

whose rapid expansion drives the engine. In the steam engine, the working substance is the
steam itself.

• The last essential ingredient may be a bit less obvious: a cold sink, i.e., a place for the heat to
go. The reason this is necessary is that if all parts of the engine were at the same temperature,
there could be no force to cause anything to move! For example, although the heat in a steam
engine is critical, it’s no less critical that cold (condensed) water be provided as an input. It’s
the cyclic process of heating the cold water and then cooling the hot steam that makes the
engine operate.

Formally, a device that uses these principles to transform heat into work is called a heat engine:

A Heat Engine is a device that converts heat into work through a cyclic process in which heat
is transferred through some working substance contained in the engine from a hot object (the
source) to a cold object (the sink).

For a simple example, consider the Aeolipile: https://en.wikipedia.org/wiki/Aeolipile.

A critical performance metric for all heat engines is their efficiency

The efficiency of a heat engine is the ratio of the work output from the working substance to
the heat input to the substance.

η =
Wout

Qin
. (73)

One of the chief objectives of thermodynamics in its early days was to maximize this efficiency, i.e.,
to extract as much work as possible by transporting thermal energy between a hot source and a cold
sink.

6.2 The Carnot Cycle

Today we’ll examine the archetype device for all heat engines: the Carnot engine. The Carnot engine
is a heat engine that operates by a specific set of transformative steps in the working substance.
For simplicity, we’ll suppose the engine consists of a small gas cylinder with a movable piston and
containing a fixed quantity of ideal gas. The cylinder is placed in between a hot object (the source)
at temperature TH and a cold object (the sink) at temperature TH. In each step of the cycle, the
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cylinder is placed in one of three positions: touching the hot object, touching the cold object, or
in isolation (not touching either object). Specifically, the Carnot cycle consists of the four steps
outlined schematically in the figure and described in detail in the text that follows.

Let’s suppose we begin our cycle in equilibrium with the hot reservoir (at temperature TH) and
some initial volume V0.

1. Isothermal Expansion: The gas is first allowed to expand reversibly at constant temperature
TH to some desired volume V1. Both V0 and V1 may be chosen by the engineer to have any
values so long as V1 > V0. The volume of gas in the remaining steps of the process are
predetermined by these choices and the constraints of the Carnot process.

2. Adiabatic Expansion: Next, the gas is removed from contact with the hot reservoir and
allowed to continue to expand, again reversibly, but this time adiabatically, until the temper-
ature reaches TC, the temperature of the cold reservoir, at some new volume V2. This new
volume is determined by V1 and the temperatures TH and TC via (see Eq. (59)):

V2 = V1

(
TH

TC

) 3
2

. (74)

3. Isothermal Compression: Now the gas is placed in contact with the cold reservoir and
compressed, again isothermally but this time at temperature TC. The volume at this step is
also predetermined by the cycle parameters, but it will be easier to calculate after we examine
the remaining steps. For now, we’ll take it as a new parameter V3.

4. Adiabatic Compression: Finally, the gas is compressed adiabatically until its temperature
reaches TH. As a function of V3, the final volume V4 is (see again Eq. (59))

V4 = V3

(
TC

TH

) 3
2

. (75)

Now, for this process to be cyclic, we must have that V4 = V0, i.e., the system returns to its original
volume on the final step. Eq. (75) thus implies that

V3 = V0

(
TH

TC

) 3
2

. (76)

With this calculation, the state of the system (both temperature and volume) is completely specified
at all points in the cycle.

25



6.3 Carnot Efficiency

From this starting point, we can easily calculate the efficiency of the cycle. The work and heat at
each step can be calculated as follows:

1. Isothermal Expansion: Since the working substance is an ideal gas (whose energy depends
only on temperature), the work performed on the system must be exactly opposite to the heat
flow into the system. From Eq. (72)

Q1 = −W1 = nRTH ln
V1

V0
(77)

2. Adiabatic Expansion: For an adiabatic process, the heat is exactly zero, so the energy
change comes entirely from the work. From Eq. (62):

W2 =
3

2
nR (TC − TH) . (78)

3. Isothermal Compression: Similar to the first step (but now with TC in the prefactor):

Q3 = −W3 = nRTC ln
V3

V2
(79)

= nRTC ln
V0

V1

(
TH

TC

) 3
2
(
TC

TH

) 3
2

(80)

= nRTC ln
V0

V1
. (81)

4. Adiabatic Compression: In exact opposition to step 2:

W4 =
3

2
nR (TH − TC) . (82)

In total, we find that

Wout ≡ − (W1 +W2 +W3 +W4) (83)

= nRTH ln
V1

V0
+ nRTC ln

V0

V1
(84)

= nR (TH − TC) ln
V1

V0
(85)

and

Qin = Q1 = nRTH ln
V1

V0
. (86)

As a result, the efficiency is

η ≡ Wout

Qin
=
TH − TC

TH
(87)

= 1− TC

TH
. (88)

Thus the efficiency of the Carnot engine is maximized when temperature of the hot body is very
large, and the temperature of the cold body is very low. In the limit that TH

TC
→ ∞, the efficiency

approaches its fundamental limit of unity.

26



6.4 The Carnot Refrigerator

A critical feature of the Carnot engine is that it is reversible – each step in the cycle can be run
backwards just as well as forwards. What this means practically is that if work is provided to
the engine, it can be used to drive heat from a cold reservoir to a hot reservoir. Although a real
refrigerator or air conditioner uses a slightly different cycle than the Carnot engine, the physical
basis is the same. When we study the Second Law, we’ll also see that the reversibility of the Carnot
engine/refrigerator has profound consequences for the upper limit of how efficiently a heat engine
can run.
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7 Entropy: The Thermal Displacement

7.1 Introducing Entropy

Finally, we’re ready to approach what may be the most enigmatic concept in thermodynamics (and
don’t you love enigmas?): the entropy. The entropy has a near-mythical reputation for mystery,5

but in a thermodynamic sense it’s really no more mysterious than work, volume, or temperature. In
fact, there’s an extremely close analogy between entropy and volume; and this is where we’ll begin
our discussion.

7.2 Entropy: The Thermal Volume

Recall that, for very small displacements dV in the volume of a system, the work performed on the
system is given by the differential relation

dW = −PdV. (89)

Physically, what this means is that, when work is performed, the macroscopic coordinate V either
pushes against or is pushed by the macroscopic force P . Physically, this makes sense. After all,
what is it that drives a system to increase its volume? Think about the diagram below, showing two
gas chambers with a movable divider between them. What determines whether the divider moves
to the left (increasing the volume of chamber 2 and decreasing that of chamber 1) or to the right
(decreasing the volume of chamber 2 and increasing that of chamber 1)? It’s the pressure, of course!
If P1 > P2, the divider moves right. If P1 < P2, the divider moves left. Pressure is thus the conjugate
force that controls changes in volume.

Now, according to our first law, the total (very small) change in energy of a system is the sum
of the differentials of heat and work:

dU = dQ+ dW. (90)

The second term here is exactly the infinitesimal work which (as we just discussed) is driven by the
pressure. What macroscopic force drives the first term, the heat?

Although the wording may be confusing, intuitively you already know the answer. Consider
the lower panel in the figure, showing two blocks of metal at temperatures T1 and T2. What force

5So much so that, when Claude Shannon introduced a new measure of information content, John von Neumann is
reputed (probably incorrectly) to have advised him to call it “entropy” as a safeguard against any future arguments
about it: since nobody understands what entropy is, Shannon could never lose!
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determines whether heat flows left (decreasing the temperature of block 2 and increasing that of
block 1) or right (increasing the temperature of block 2 and decreasing that of block 1)? The
temperature of course! If T1 > T2, the heat flows right. If T2 > T1, the heat flows left.

This naturally suggests a question: If the macroscopic force called pressure pushes against the
macroscopic coordinate called volume, what macroscopic coordinate does temperature push against?
The answer, as you may guess by now, is what we call the entropy.

Entropy (denoted by the symbol S) is the macroscopic property whose driving force is tem-
perature.

Now, this definition may feel a bit unsatisfying, since it doesn’t really tell you what entropy is,
it just tells you how it behaves. Volume feels like a familiar concept since it’s something you can feel
with your hands and see with your eyes. The reason entropy remains enigmatic for so many of us is
precisely that you can’t feel it with your hands or see it with your eyes.

But, ultimately, this is exactly the point. Remember that we defined heat as any change to the
energy of a system that is not describable as macroscopic work – i.e., any change to system energy
that you can’t describe as a displacement in a coordinate that you can see with your eyes or feel
with your hands. That exchange of energy via heat, of course, is driven by temperature. And we’ve
now defined entropy as exactly that coordinate that’s driven by heat – i.e., exactly that macroscopic
coordinate that you can’t see with your eyes or feel with your hands!

Fortunately, there is some hope for building an intuitive picture. As it turns out, you can quite
accurately understand entropy as a thermal volume – a measure of the amount of space accessible
to a system at the microscopic level. Just as pressure pushes a compressed gas to increase the
macroscopic volume it inhabits, temperature pushes particles at the microscopic level to inhabit
new regions of “phase space”, i.e., new configurations of the coordinates and momenta. At low
temperatures, there are relatively few states that a physical system can occupy since thermal energy
is simply not available to push the particles over energetic barriers. As the temperature increases,
many more possible configurations are made accessible.

For example, at low temperatures, proteins tend to “collapse” into a compact folded (or some-
times globular) state, the lowest energy conformation available. At high temperatures, many more
conformations are accessible; the protein could remain folded, but it could also unfold to produce the
long, winding chain of a disordered polymer. (This thermal denaturation is exactly what happens
when you cook an egg.) Ultimately, entropy is just a measure of the amount of thermal volume
occupied by the system particles, i.e., the number of different microscopic configurations accessible
to the system.

Later on in the course, we’ll see that statistical mechanics (which seeks to derive the principles
of thermodynamics from microscopic models) provides a more formal confirmation of this intu-
itive picture. In particular, statistical mechanics leads (or is founded on, depending on the logical
framework) the result that

S = kB ln Ω, (91)

where kB is Boltzmann’s constant (the ideal gas constant R divided by Avogadro’s number NA) and
Ω is a measure of the number of distinct microscopic states accessible to the system.

7.3 Measuring Entropy

The above definition of entropy is well and good, but its abstractness begs one important question:
How do you measure entropy? By construction, entropy is a quantity that can’t be directly measured,
so it’s not obvious that it even makes sense to talk about it as a meaningful physical quantity.

Fortunately, there’s a straightforward solution. Although we can’t readily measure the absolute
entropy that a system possesses, we can measure changes in the entropy of a system. Just as Eq. (89)
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Figure 1: Image by Vincent Voelz, online at https://commons.wikimedia.org/wiki/File:ACBP_

MSM_from_Folding@home.tiff. Related to publication Voelz et al. J. Am. Chem. Soc. 2012, 134,
12565-12577; http://dx.doi.org/10.1021/ja302528z

describes the infinitesimal work performed on a system in terms of an infinitesimal change in volume
(i.e., the macroscopic volume), a conjugate relation

dQ = TdS (92)

describes the infinitesimal heat added to a system in terms of infinitesimal displacements in entropy
(i.e., the thermal volume). Rearranging this equation, we find that

dS =
dQ

T
. (93)

Integrating both sides of the equation gives us a practical means of determining entropy changes
experimentally:

Measuring Entropy Changes: In any reversible process the change in entropy of a system
can be calculated as

∆S =

∫
dQ

T
. (94)

Note that, just like in our discussion of the “well-definedness” of PV work, it’s necessary for this
definition to make sense that the temperature remain well-defined at all points in the process – in
other words, that the process is reversible.

7.4 Entropy as a State Function: ∆S for Irreversible Processes

There seems to be a logical loophole here: Our definition only works for reversible processes, which
as we already stated, don’t really exist! How do we measure entropy changes for real processes?

The solution to this dilemma is to recognize that – like energy, temperature, pressure, and volume
– entropy is a state function. As a result, the entropy change involved in a process depends only on
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the initial and final states and not the specific path that connects them. Thus we can calculate the
entropy change for a real process by calculating the entropy change for an idealized – reversible –
process that connects the same two states. The example below illustrates more concretely how this
works.

Example: Irreversible Expansion

Problem: Suppose we have an ideal gas contained in a volume V1 and suddenly open a valve
that allows the gas to expand into a larger chamber to some total volume is V2 > V1. Assume
that the process is adiabatic, i.e., that both chambers are thermally insulated so that no heat
can flow into the system during the process. What is the entropy change for this process?

Solution: The process is clearly not reversible since the gas is very much not in equilibrium
while it flows between the two chambers. However, we can still calculate the entropy change if we
can think of another reversible process that ends with the same result! Now, in the irreversible
process, the system neither does work nor receives heat from the environment. Therefore the
energy change is zero, i.e., ∆U = 0. Since the gas is ideal, this means that the change in
temperature is also zero, i.e., the initial and final temperatures are the same.

Thus we could achieve the same change in state by a reversible isothermal expansion to the
new volume V2. But we already solved this problem in Section 5! The result is that the heat
required is exactly

Q = nRT ln
V2

V1
. (95)

Since the temperature is constant, the entropy change is thus

∆S =
Q

T
= nR ln

V2

V1
. (96)

The entropy change for the irreversible expansion is necessarily the same.
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8 The Second Law: Entropy Increases

8.1 Entropy: The One, the Only

In the last section, I suggested that entropy is an enigmatic concept simply because it’s not something
that we can directly observe or measure. While this is true, it probably isn’t the only reason
entropy attracts so much interest and speculation. The second reason is that, among all conceivable
thermodynamic coordinates, entropy plays a unique role in dictating not just how physical processes
take place but also which processes take place. To be more precise, thermodynamics asserts that:

Second Law of Thermodynamics

The entropy of any isolated system is conserved during any reversible process and increases
during any irreversible process.

Before discussing this remarkable claim in more detail, we should emphasize its one major limitation:
it applies only to isolated systems. The entropy of a system can be decreased by the exchange of
energy (either heat or work) between the system and its environment. Thus, for example, the entropy
of a glass of lukewarm water can be decreased by placing it in a freezer. As the water freezes, the
entropy of the glass decreases. (This could never, of course, happen to an isolated glass of water
at equilibrium above the melting point.) The entropy of the freezer, however, increases during this
process – so much so, in fact, that if the glass and the freezer were taken together as an isolated
system, the total entropy of the composite would be positive, in agreement with the Second Law.
Thus entropy can increase – but only via interactions with an environment.

With this limitation in mind, the uniqueness of the role played by entropy in this discussion
should not be overlooked. Suppose that in the Second Law we replaced the word “entropy” with
the name of another thermodynamic variable:

• The volume of an isolated system increases during any irreversible process.

• The pressure of an isolated system increases during any irreversible process.

• The temperature of an isolated system increases during any irreversible process.

None of these statements are true! In fact, there are many irreversible processes that can occur
in isolation and at constant volume (e.g., the irreversible combustion of hydrogen and oxygen to
create water in a sealed chamber). Likewise, the irreversible condensation of steam into liquid water
will certainly decrease the pressure inside an isolated gas cylinder. And many irreversible chemical
reactions consume heat, lowering the temperature of their container if carried out in isolation.

Only entropy carries the distinction of never decreasing in an isolated system. For this reason,
entropy has been called the “arrow of time” – an indicator unlike any other that, in an isolated
system, always increases with the passage of time. While microscopic laws like Newton’s equations
are time-reversible, the macroscopic principle embedded in the Second Law of Thermodynamics is
not. It is perhaps this observation more than any other that has cemented entropy’s unique and
inscrutable place in our collective understanding of the universe.

8.2 The Relentless March of the Thermal Volume

All this discussion of the “uniqueness” of entropy begs the question: Why entropy? In the last
lecture, we saw that entropy was very closely analogous to the macroscopic volume. Just as pressure
drives expansion of the macroscopic (mechanical) volume V , temperature drives expansion of the
microscopic (thermal) volume S. In this sense, the two quantities seem quite comparable. So what’s
so special about entropy?
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Ultimately, entropy’s uniqueness comes from its fundamental connection with heat. As we’ve
repeated several times already, heat is uniquely that type of energy change that can’t be described
as macroscopic work. Now, in a macroscopic system, consisting of on the order of 1023 atoms,
the few coordinates we recognize as corresponding to the performance work – say volume, height
above the earth, chemical composition, or position in a (macroscopic) electric field – represent an
infinitesimally small fraction of all the roughly 1023 possible coordinates that define the microscopic
state. So while only a handful of coordinates describe all possible modes of macroscopic work, the
entropy represents the thermal volume inhabited by all the remaining degrees of freedom.

In this light, the relentless march of increasing entropy in isolated systems shouldn’t come as a
surprise. In the absence of outside intervention (i.e., in isolation), it seems reasonable to expect that
a system will tend to distribute its energy more or less randomly through all available coordinates.
And, indeed, this is precisely what an increase in entropy represents: an increase in the “thermal
volume” accessible to the system at a microscopic level. Once this thermal volume reaches a certain
level, decreasing the volume (i.e., lowering the entropy) would require all the countless microscopic,
non-work coordinates to collectively withdraw from those regions of phase space that they previously
occupied. In the absence of outside intervention, the chances of this occurring (in a system of ∼ 1023

particles) is essentially zero.

8.3 Entropy and Spontaneity

From a practical perspective, the great utility of the Second Law is that it gives us a rigorous way to
quantify whether or not a given process will actually proceed in the real world. Recall that we earlier
stated that, in the real world, all processes are, to some extent, irreversible. Flipping the Second
Law in reverse, then, one obtains the decree that a process in an isolated system will only happen in
the real world if it increases the entropy of the system. Thus if we can calculate the entropy change
for a given process, we can certify definitively whether or not it can take place in the real world.6

For many processes, this predictive power seems a bit unnecessary. For example, while we could
use the second law to certify definitively that the air in a room won’t spontaneously contract into one
corner (by calculating the entropy change associated with the corresponding reversible compression,
common sense already tells us that we probably don’t need to worry about it! Where the Second Law
really comes in handy is in dealing with less intuitive processes such as the progress of a chemical
reaction. In this case, it’s often not obvious at all ahead of time whether a reaction will proceed in the
forward or reverse direction, or at what point (i.e., at what ratio of reactant:product concentrations)
it will stop. As we’ll see in the second section of our course (after Exam 1), the Second Law gives us
exactly the tools we need to make such predictions quantitatively, often using experimental inputs
that are much easier to collect than carrying out the actual reaction in the lab.

8.4 Alternative Statements of the Second Law

We should note here that there are several different ways of stating the Second Law. They all turn
out to be equivalent, but the connections between them may not be obvious. We’ll provide two
of those statements here and show how they follow from our earlier statement. (They can also be
shown to imply the Second law, but we won’t worry about demonstrating that here.)

Clausius Statement of the Second law
Heat cannot of itself transfer from a colder body to a hotter body.

The phrase “of itself” here means “without work input from the environment”. Recall that in
our discussion of the Carnot engine we noted that the process can be run in reverse as a “Carnot

6Note that the Second Law doesn’t guarantee that a given process will happen, only that certain processes will
not.
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refrigerator”. So if work is supplied to the system from the outside, heat can be transferred from a
colder body to a hotter one. Clausius’ statement asserts that this can only happen with the input
of external work.

Why does this follow from the Second Law? A fairly simple calculation (that we’ll go through
in class) shows that any process in which heat flows from a cold body to a hot body decreases the
entropy of the combined system. According to the Second Law, this is impossible.

Carnot’s Theorem
No heat engine operating between two temperature TH and TC can be more efficient than

the Carnot engine operating between those temperatures.

This statement might seem a bit surprising. What is so special about Carnot’s heat engine?
The answer is that it’s reversible: i.e., every step of the cycle can be carried out arbitrarily close
to equilibrium. As a result, the engine can be run backwards as a refrigerator to pump heat from
a hot to a cold resorvoir, and it operates with the same efficiency as a refrigerator as it does as
a heat engine. As it turns out, this implies that if it were possible to build a heat engine with a
higher efficiency than a Carnot engine, we could use the work produced by that engine to run a
Carnot engine in reverse and overall to transport heat from a cold body to a hot body. This violates
Clausius’ statement and, therefore, the Second Law.

To see this, suppose we had a “better” engine that operates at an efficiency ηB greater than the
Carnot efficiency ηC = 1− TC

TH
. We could then set up both engines to operate between the same hot

and cold reservoirs, and connect the work output from the Better engine to the work input of the

Carnot engine. The Better engine thus operates in the forward direction (i.e., producing work W
(B)
out

from heat input Q
(B)
in ), while the Carnot engine operates in reverse as a refrigerator (i.e., transferring

heat Q
(C)
out into the hot body driven by the work input W

(C)
in = W

(B)
out from the Better engine). Note

that we’ve chosen our sign conventions here so that all the quantities just mentioned are positive.
Now, the efficiency of each engine is

ηB =
W

(B)
out

Q
(B)
in

(97)

ηC =
W

(C)
in

Q
(C)
out

(98)

which can be rearranged to give

Q
(B)
in =

W
(B)
out

ηB
(99)

Q
(C)
out =

W
(C)
in

ηC
. (100)

The total heat transferred into the hot reservoir in this process is then

QH = −Q(B)
in +Q

(C)
out (101)

= −W
(B)
out

ηB
+
W

(C)
in

ηC
(102)

= W
(B)
out

(
1

ηC
− 1

ηB

)
. (103)

If ηB > ηC , as assumed, then 1
ηC

> 1
ηB

, and in total

QH > 0. (104)
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But this violates the Clausius statement of the Second Law! (Note that the combined system of
hot reservoir, cold reservoir, and both engines constitues an isolated system – no work or heat came
in from the outside during this process.) The only possible conclusion is that – if the Second Law
holds true – no engine can operate with an efficiency greater than that of the Carnot engine.
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9 The Third Law: Standardizing Entropy

9.1 The Third Law

Equation (94) gives us a straightforward means of calculating the change in the entropy of a system
as a function of temperature. It doesn’t, however, give us any means of establishing the absolute
entropy at any given temperature. Although determining such absolute values isn’t essential to most
thermodynamic applications (entropy changes turn out to be much more significant), this situation
nonetheless begs an important conceptual question: Does the entropy of a material even have a
well-defined absolute value?

The Third Law of Thermodynamics answers this question in the affirmative:

Third Law of Thermodynamics: The entropy of all material systems approaches zero as
the temperature approaches absolute zero on the ideal gas scale.

The third law thus establishes that the absolute value of the entropy of all materials approach zero
at T = 0 K. From this fact, the absolute value of the entropy at any other temperature can be
calculated from Eq. (94), using T = 0 K as the lower limit of integration. For example, if a material
is heated at constant pressure from 0 K to some finite temperature T ′, the absolute entropy of the
material can be calculated as

S(T ′) =

∫ T ′

0

dQP
T

=

∫ T ′

0

dT
CP (T )

T
, P = constant. (105)

Equivalently, if the heating is carried out at constant volume, we obtain

S(T ′) =

∫ T ′

0

dT
CV (T )

T
, V = constant. (106)

Now, it should be acknowledged that no real-world experiment can reach exactly absolute zero.
As a result, any real-life application of these formulas must suffer some experimental uncertainty.
However, the same statement could be made about any experimental measurement; and since low-
temperature experiments now routinely reach temperatures much less than 1 K, the error is in most
cases not serious. Over the years, researchers have used these methods to establish the absolute
entropy values of a vast array of different materials, providing a wealth of valuable thermodynamic
reference data.

9.2 Why Zero?

Originally, it was exactly this sort of experimental tabulation that led to the establishment of the
Third Law itself. Intuitively, however, the law is also justified by our understanding of entropy as
the “thermal volume” of thermal states accessible to the particles of a system. As the temperature
approaches absolute zero, the number of thermally accessible states decreases further and further
until, at absolute zero, the system is unable to access any states except its absolute energetic mini-
mum. It is exactly this “contraction” of all microscopic coordinates to their minimum energy state
that causes the macroscopic entropy coordinate to tend toward zero.

9.3 Are There Exceptions?

This observation also suggests a possible reason that real-world measurements might deviate from the
Third Law, even in the T → 0 limit. Experimentally, it can often happen that, as a material is cooled,
it becomes trapped in a local energy minimum that is not the global energy minimum. As a result,
the system never releases the heat associated with the transition from this local minimum to the
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global minimum, and the absolute value of the entropy remains above zero. At the microscopic level,
this corresponds to the fact that the microscopic coordinates have failed to completely relinquish
their hold on the thermal volume.

A commonly cited example is the the carbon monoxide crystal. In a perfect CO crystal, the C-O
bonds are all aligned in the same direction in a “head to tail” configuration, so that each C atom is
adjacent to the O atom of its nearest neighbor, something like:

C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O
C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O
C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O

However, the energy of the alternate “head-to-head” configuration – where one molecule’s O atom
is adjacent to its neighbor’s O – is sufficiently close in energy to that of the heat-to-tail structure (and
the potential energy barrier between them is sufficiently large) that inevitably in real-life experiments
some of the CO molecules get trapped in the “wrong” state, like the red-colored molecules below:

C=O· · ·O=C· · ·C=O· · ·C=O· · ·C=O· · ·C=O
C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O· · ·C=O
C=O· · ·C=O· · ·C=O· · ·C=O· · ·O=C· · ·C=O

This leads to a small but measurable offset in the absolute value of the experimentally measured
entropy compared to what would be expected from the entropies of the pure elements C and O.

Such errors do not invalidate the Third Law, so long as it is understood that the law applies only
when the material is cooled slowly enough that the absolute-minimum configuration can be reached.
And in most cases the errors involved are small enough to be of little practical significance.

9.4 Entropy of the Ideal Gas

Now that we have a way to define the absolute value of entropy, it becomes quite informative to
inquire: What is the absolute entropy of the ideal gas?

To answer this question, we return to our “follow the energy” strategy of applying the First Law.
Combining the differential form of the First Law

dU = dQ+ dW, (107)

with Eqs. (92) (relating the differential heat and entropy) and (89) (relating the differential work
and volume), we find

dU = TdS − PdV (108)

or, after some rearrangement

dS =
dU

T
+
P

T
dV. (109)

Now, using Eq. (42) and (41) to simplify each term we have

dS =
3

2
nR

dT

T
+
nR

V
dV. (110)
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Since the two differentials are independent of each other, they can be integrated separately to obtain
for a finite change

S2 − S1 =
3

2
nR ln

T2

T1
+ nR ln

V2

V1
. (111)

Intuitively, this result seems reasonable: larger temperatures and larger volumes both tend to in-
crease the entropy since they permit the microscopic coordinates to explore a larger number of
distinct states.

Something strange happens, however, if we try to apply the Third Law to this expression. Ac-
cording to the Law, the entropy S1 at T1 = 0 K should be exactly zero, regardless of the volume V1.
Applying this to our expression, we obtain

S2 =
3

2
nR ln

T2

0 K
+ nR ln

V2

V1
. (112)

But ln T
0 is infinite! Physically, this implies that the entropy of the ideal gas at any positive tem-

perature is infinitely larger than its entropy at T = 0 K. What’s going on?
Ultimately, the paradox results from the fact that no real gas follows the ideal gas equation

of state in the T → 0 limit. Under the assumptions of the ideal gas law, the only thing that
changes about an ideal gas as the temperature is lowered is that the particles move more and more
slowly. At no temperature do they ever reach an “absolute minimum” since they always possess
finite energy and thus can always move a little more slowly, leading to a further release of entropy as
the temperature is lowered. Real gas particles, by contrast, eventually begin to interact with each
other, collapsing into first a liquid and then solid phase, and eventually converging to an absolute-
minimum crystalline form. As the absolute minimum state is approached, the entropy released with
each decrease in temperature becomes smaller and smaller until the entropy finally converges to its
absolute minimum of zero.

Although Eq. (111) fails to accurately describe real gases as they approach absolute zero, it does
provide an extremely useful approximation at ambient temperatures. Later in the course when we
encounter the chemical potential, this result will provide the key to our understanding of both ideal
gases and (more practically useful) ideal solutions.

38



10 Phase Transitions and Phase Diagrams

So far we’ve limited our discussion of thermodynamics to single-component, single-phase systems,
i.e., systems where the entire sample can be described uniformly as solid, liquid, or gas. Although
single-phase systems are very useful for introducing basic concepts, a great deal of interesting thermo-
dynamics takes place in multi-phase systems, i.e., where two or more phases coexist in equilibrium.
In this lecture, we’ll introduce some basic vocabulary to describe such systems and the processes
that transform one phase to another. Let’s start with some definitions:

A thermodynamic phase is a region of space, throughout which all physical properties of a
material are essentially uniform.

Probably the most familiar examples of thermodynamic phases are the three classic states of matter
solid, liquid, and gas. But nature – and especially biology – is full of other interesting examples. To
name a few:

• Most chemical reactions in biology occur in the solution phase – the reacting species (e.g.,
proteins and substrates) are not themselves “liquid”, but they are solvated by the solution
around them. Very often biological function is lost when enzymes crash out of solution into a
solid phase.

• Cell membranes can exist in a variety of distinct phases (characterized by different stiffness
and permeability) depending particularly on temperature and the molecular composition (e.g.,
cholesterol content).

• Many proteins that interact specifically with cell membranes can exist in an equilibrium be-
tween bound and unbound phases.

Although we’ll continue to use the simpler examples of solid/liquid/gas to introduce basic con-
cepts, these more complex biological examples will become increasingly relevant as we discuss ap-
plications of these thermodynamic principles.

10.1 Phase Transitions and Phase Diagrams

A phase transition is a physical process that converts matter in one phase to another.

Familiar examples of phase transitions include:

• Melting/Freezing: A transition from solid to liquid / liquid to solid.

• Vaporization/Condensation: A transition from liquid to gas / gas to liquid.

• Sublimation/Deposition: A transition from solid to gas / gas to solid.

For pure substances, transitions between these various phases occur at well-defined conditions.
For example, under 1 atm of pressure, water freezes at 0 oC and boils at 100 oC. In fact, the
conditions under which these phase transitions take place are so well-characterized (and readily
available) that the Celsius scale was defined to produce these values!

For most substances, of course, it’s not quite so easy to keep track of the conditions under which
they exist in solid, liquid, or gaseous states – or where they coexist between various states. For this
reason, phase diagrams are often used to catalog this information

A phase diagram is a plot showing the physical state (i.e., phase) of a given pure substance
as a function of its macroscopic parameters.
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Most often, phase diagrams are plotted as a function of temperature volume, and/or pressure; but,
in general, any macroscopic coordinate that defines the system state can be used. For example, a
phase diagram for a cell membrane might be plotted as a function of cholesterol concentration.

For a single, pure substance, the most complete type of phase diagram consists of a three-
dimensional plot that can be thought of as an “existence surface” for the material. Read as a
function of P and V , for example, the plot below tells us what temperature would be required to
bring the substance to a given set of values for pressure and volume. Alternatively, if we specify
P and T , the plot tells us what volume the system would occupy at, say, 1 atm of pressure and
a temperature of 50 oC. The labels on the surface tell us what phase the given point corresponds
to. Note that in such a three-dimensional phase diagram, the equilibrium system can never occupy
points above or below the surface.

Image from: http://www.thermalfluidscentral.org/encyclopedia/index.php/Properties_
of_pure_substances.

To simplify the visualization of such diagrams, we often project them down into only two di-
mensions. Let’s look first at the Pressure/Temperature graph on the left. This graph is roughly
what one would see if we were to view the 3D phase diagram above from a vantage point directly
perpendicular to the PT plane. We no longer have any information on what the volume is at a
given point, but we can still identify the various phases of the material as a function of pressure and
temperature. Now, at most points in such a PT diagram, the volume is, in fact, uniquely specified
in our 3D diagram as a function of pressure and temperature. The only exceptions are points along
the coexistence curves that define the boundaries between the various phases.

A coexistence curve in a PT phase diagram indicates values of the pressure and temperature
at which more than one phase can coexist.

Referring back to the our 3D diagram, note that there are certain values of pressure and temperature
at which a line drawn parallel to the V axis would lie exactly within the surface. Physically, such a
line represents the fact that, when a phase transition happens under constant pressure, the volume
of the system changes but the temperature remains constant.
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For example, water can exist at 1 atm and 0 oC either as a solid or as a liquid. Think of ice
cubes added to a drink of water in a styrofoam cup, for example. When ice is added to the drink,
the liquid and solid phases quickly establish an equilibrium, where some of the ice is melted, and the
rest remains solid. If the system were perfectly insulated, this equilibrium would exist indefinitely,
with both phases at exactly 0 oC. In reality, of course, the styrfoam cup does let in a small amount
of heat; and, as a result, the ice gradually melts. Not until all the ice has melted, however, does the
temperature of the drink increase above 0 oC, assuming, of course, that the heat enters slowly enough
for the liquid and solid phases to maintain a well-defined equilibrium with each other. Although it
may not be perceptible to our eyes, a very small volume change does occur within the system during
this melting process. It is exactly this volume change that is represented in the 3D phase diagram
by the lines parallel to the V axis: the system takes on a series of different volumes as it transitions
from “mostly ice” to “all water.” In the 2D projection of the PT diagram, all information on this
volume change is lost. All we know is that at the given values of P and T (say 1 atm and 0 oC) the
liquid and solid phases coexist.

Image from: http://www.thermalfluidscentral.org/encyclopedia/index.php/Properties_
of_pure_substances.

A similar equilibrium exists between liquid and gas phases (think, for example, of the gas/liquid
equilibrium set up in an autoclave or pressure cooker). A unique feature of gas/liquid equilibrium,
however, is the existence of a critical point, beyond which no distinction can be drawn between gas
and liquid phases.

The critical point in a PT phase diagram is the point – defined by a critical temperature
Tcrit and critical pressure Pcrit – at which liquid and gas phases can no longer be distinguished.
If the temperature is higher than Tcrit or the pressure is higher than Pcrit, the volume of the
substance changes smoothly as a function of P and T with no noticeable phase transition
between gas and vapor.

A similarly unique feature of the PT diagram is the triple point :

The triple point in a PT phase diagram is the single point at which solid, liquid, and vapor
phases all coexist with each other at equilibrium.

Thanks to the uniqueness of this phenomenon – three-way coexistence can occur only at a single tem-
perature – the triple point is, in fact, the basis for our rigorous definition of the Kelvin temperature
scale. By definition of the Kelvin scale, the triple point of water is exactly 273.16 K.
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10.2 Entropy and Heat of Transition

One of the interesting features of phase transitions is that we can directly measure the entropy
change associated with it. Intuitively, when a solid melts to a liquid, we expect it’s entropy to
increase – and indeed this is generally the case. In fact, we can quantify these entropy changes by
measuring the heat of transition associated with the process.

A heat of transition is the amount of heat that must be added to a system to bring about a
phase transition at the transition temperature and constant pressure (i.e., melting point, boiling
point, etc.).

Some common examples include:

• Heat of fusion: the amount of heat required to melt a substance from a solid to a liquid.

• Heat of vaporization: the amount of heat required to vaporize a substance from liquid to gas.

• Heat of Sublimation: the amount of heat required to sublimate a substance from solid to gas.

Note that if the transition is carried out reversibly, this allows us to calculate the entropy change
associated with the process by simply dividing the transition heat by the temperature:

∆Strans =
Qtrans

T
. (113)
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11 Enthalpy

11.1 Thermodynamics in the Real World: Volume vs. Pressure

At the end of the last section, we introduced the concept of transition heat – the amount of heat
released by a substance when it undergoes a reversible phase transition at the transition temperature
and constant pressure. As we saw, once the transition heat for a given substance is known, it can be
used to calculate the entropy change associated with the transition by simply dividing the transition
heat by the transition temperature.

What’s perhaps a little dissatisfying about this description (from a thermodynamics perspective)
is that the transition heat can’t be directly understood as a change in any particular state function.
The heat entering or released from the system certainly contributes to changing the thermodynamic
energy U , but ∆U also contains contributions from the work performed by whatever expansion or
contraction of the system volume accompanies the transition.

If we were to allow the transition to occur at constant volume, of course, this wouldn’t be
a problem. Since no work can be performed at constant volume, we could always just define a
“constant volume transition heat” which would directly measure the energy change associated with
the transition.

The problem is that, experimentally, it’s much easier to carry out processes at constant pressure
than constant volume. For most of us in this course (whether chemist, biochemist, biologist, or
pharmacologist) most of the processes we study occur at constant pressure: benchtop reactions; wet
lab cultures; drug absorption, storage, or metabolism. Very few occur at constant volume. In other
words, although the thermodynamics might be easier at constant V , the real world tends to operate
at constant P .

11.2 Enthalpy – a better potential

In short, the energy turns out to be something of an inconvenient quantity to work with in the real
world. And this problem is by no means limited to dealing with transition heats! As we’ll see in
the coming weeks, it’s often extremely difficult to monitor energy changes directly in experimental
measurements.

It’s for this reason that a great deal of time is spent in thermodynamics introducing new ther-
modynamic potentials: quantities that behave like energy in certain circumstances but are easier to
measure directly or are at least more closely related to experimental measurements. Typically how
this works is that we define a new thermodynamic potential as the energy U plus or minus some
quantity that we don’t want to deal with in a particular experiment. In the context of transition
heats, this leads us to define the enthalpy :

The enthalpy H of a substance is its energy plus the product of its pressure and volume:

H ≡ U + PV. (114)

It may not seem obvious that this is an improvement. If our original problem was that U is hard
to measure, how does it help to define a new potential in terms of that hard-to-measure quantity?
But take a look at what happens when we monitor changes in enthalpy:

dH ≡ d(U + PV ) (115)

= dU + d(PV ) (116)

= dU + PdV + V dP. (117)

In the first line, we simply applied the definition Eq. (114). In the second and third we just expanded
the differential using the sum and product rules. Notice now what happens when we use Eq. (108)
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to expand dU in terms of differentials in S and V :

dH = dU + V dP + PdV (118)

= TdS − PdV + PdV + V dP (119)

= TdS + V dP. (120)

Thus, remembering that for reversible processes:

dQ = TdS, (121)

we see that, for a reversible process, the enthalpy change is the sum of two terms: the heat TdS
that enters the system and a differential pressure term V dP .

The reason this makes the enthalpy useful is that if we carry out a process at constant pressure,
the last term (V dP ) disappears, and the enthalpy change is directly measured by the heat added to
the system.

Key Idea: The enthalpy is a state function whose change is, at constant pressure, directly
measured by the amount of heat entering a system. So, for constant pressure processes, the
enthalpy acts like heat – but it’s also a state function!

11.3 Why does this matter?

Okay, so enthalpy is a state function. Why do we care?
Where this turns out to be really useful is in analyzing the thermodynamics of chemical

reactions. Suppose we wanted to know, for example, how much heat is produced in the reaction

2 C(graphite) + 2H2(g) −−→ C2H4(g) .

This reaction isn’t easy to carry out directly. (How do you get the hydrogens to interact with
the graphite in such a way as to produce only ethylene?) What is easy to do, however, is to measure
the enthalpy change (i.e., heat at constant pressure) for burning either the reactants

2C(graphite) + 2O2(g) −−→ 2CO2(g) ∆H = -787,365 J
2H2(g) + O2(g) −−→ 2H2O(l) ∆H = -571,922 J

or the products C2H2(g) + 3O2(g) −−→ 2CO2(g) + 2H2O(l) ∆H = -1,411,577 J.

In each case, the value of ∆H given to the right of the equation is the measured molar enthalpy
change when the reaction occurs at 298 K.

Now, because enthalpy is a state function:

• The enthalpy change for any forward reaction is just minus the enthalpy change for the reverse
reaction. For example, the enthalpy change for the reaction

2CO2(g) + 2H2O(g) −−→ C2H2(g) + 3O2(g).

is ∆H = +1,411,580 J, i.e., minus the enthalpy change for the combustion reaction shown
earlier.

• The enthalpy change for a combination of two separate reactions is just the sum of the enthalpy
changes for each individual reaction. So, for example, the enthalpy change for the reaction

2 C(graphite) + 2H2(g) + 3O2(g) −−→ 2CO2(g) + 2H2O(l),
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which is just the combination of combustion of graphite and hydrogen gas (above), is ∆H =
−787, 365 J −571, 992 J = −1, 359, 357 J.

• The enthalpy change for a sequence of (balanced) reactions is again just the sum of the enthalpy
changes for each individual reaction. This means that the enthalpy change for the reaction

2 C(graphite) + 2H2(g) + 3O2(g) −−→ 2CO2(g) + 2H2O(l) −−→ C2H2(g) + 3O2(g) .

is just the combined enthalpy changes for each individual reaction, i.e., (from the last two
bullet points) ∆H = −1, 359, 357 J + 1, 411, 580 J = 52, 223 J

Thus by combining the ∆H values for several easy to measure reactions, we can calculate ∆H
for a single difficult to measure reaction, i.e., the production of ethylene from graphite and hydrogen
gas. And all because enthalpy is a state function!

11.4 Here be dragons!

We’ve avoided two complicating factors in our discussion:

• First, I’ve been very careless in specifying the initial and final states of reactants and products
in these reactions. In general, the enthalpy of all materials depends on their temperature and
pressure, as well as their physical state (solid, liquid, gas, solution, etc.). The goal of this
lecture was to introduce the concept of enthalpy as a state function without getting too far
“down into the weeds” with specification of the state. We’ll discuss this problem much more
carefully in the next lecture.

• We started off our lecture with noting that transition heats (i.e., enthalpies) can be used to
calculate the entropy change associated with a given phase transition. To head off any confusion
in the future, let me point out that we usually cannot do the same with the enthalpies of
reaction that we’ve just been discussing. Only in the special case that a reaction is performed
reversibly (and at constant pressure) can we use the enthalpy change to calculate ∆S. Most
experimental reactions are not carried out reversibly and thus the associated reaction enthalpies
are useless for the purpose of calculating ∆S. In later lectures, we’ll return to the idea of
reversible chemical reactions and see how it is possible experimentally to determine ∆S.
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12 Measuring and Tabulating Enthalpy Changes

In the last lecture, we introduced a new state function called the enthalpy H which (we claimed)
is easier to measure experimentally than the energy U . We showed, in particular, how enthalpy’s
status as a state function makes it easier to tabulate ∆H values for reactions that may be hard to
conduct directly under real-life experimental conditions. In this lecture, we’ll talk about some of the
practical issues associated with enthalpy measurements and conventions on how published enthalpy
values are tabulated.

12.1 Reversibility

Let’s first cover an important conceptual issue: reversibility in enthalpy measurements. We noted
in the last lecture that if a process is carried out reversibly and at constant pressure then

dH = TdS = dQ. (122)

Thus for reversible, constant-pressure reactions, the enthalpy change is exactly the heat input to the
system:

∆H = Q. (123)

In the real world, though, it’s difficult to carry out reactions reversibly. It’s easy to combust hydrogen
gas with oxygen to produce water. But the reaction is highly explosive! It’s not so easy to carry out
the process reversibly. So how do we measure enthalpy changes in irreversible chemical reactions?

Actually, the situation is not so bad. As it turns out, Eq. (123) is valid even for irreversible
processes (when Eq. (122) is not valid), so long as the pressure remains well-defined and constant
throughout the process. Note from the definition H = U + PV that for any change in state

∆H = ∆U + ∆ (PV ) . (124)

Now, if the initial and final pressures are the same, ∆(PV ) = P∆V , so that

∆H = ∆U + P∆V. (125)

This equation is valid regardless of the path that connects the two states! Now, using the First Law,
we can expand

∆H = Q+W + P∆V (126)

= Q− P∆V + P∆V (127)

= Q. (128)

The only assumption we have made here is that the pressure remains well-defined and constant
throughout the process. (This is a necessary assumption for replacing W with −P∆V .) This
condition is always satisfied for reversible processes, but it is also satisfied for many irreversible
processes.

As an example, suppose we want to know the enthalpy change for the reaction of NaOH with
HCl (both in aqueous solution). A very reasonable measurement could be achieved by simply

1. Placing the NaOH solution in a styrofoam cup with a loose-fitting lid,

2. Measuring the initial temperature of the NaOH solution,

3. Bringing the HCl solution to the same initial temperature,

4. Adding the HCl to the cup,
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5. Measuring the final temperature of the solution, and

6. Using the measured temperature change, along with the known heat capacity of water, to
calculate the amount of heat generated in the reaction.

So long as the lid of the cup fits loosely enough that air is free to enter and leave our system, the
pressure on the solution will remain essentially constant during this process. Thus the heat evolved
during the action can accurately be interpreted as the enthalpy change for the reaction under the
specified conditions.

Note that, in order for the evolved heat to be directly measured as heat, we ought really to carry
out the measurement in a slightly different way: instead of monitoring the temperature change
inside the cup, we should allow the warm cup to gradually heat up some other reference system
(say a separate water bath, outside the cup) until it returns back to its initial temperature. Then
the thermal energy evolved during the reaction would be properly measured as (negative) heat, i.e.,
through the flow of that energy out of the system. In practice, though, monitoring the temperature
change is very nearly just as accurate since (unless the concentration of NaOH and/or HCl is very,
very high, so that the heat capacity of the solution differs significantly from that of pure water) the
known heat capacity of water allows us to calculate how much heat would flow out of the system if
we allowed it to do so.

In describing the enthalpy changes associated with different chemical reactions, it’s useful to
define two short-hand descriptors:

An exothermic process is one that, at constant pressure, releases heat into the environment,
i.e., for which ∆H < 0.

An endothermic process is one that, at constant pressure, absorbs heat from the environment,
i.e., for which ∆H > 0.

12.2 Standard States

As discussed in the last lecture, the beautiful thing about entropy is that – because it’s a state
function – we can use tabulated values of ∆H measured for experiments that are easy to perform
to calculate ∆H values for experiments that are hard to perform. For this process to be practically
useful, however, we need to have some conventions on the conditions under which experiments
will be performed and recorded. After all, there are an infinite number of different variations on
temperature, pressure, concentration, etc. under which a reaction could be carried out. If all the
tabulated values of ∆H applied to different reaction conditions, there would be no way to combine
them, since we’d have no way of making sure that the product state for one reaction really matched
the initial state for the next.

To avoid such problems, scientists have adopted a (nearly) universal convention on the definition
of a thermodynamic standard state:

The thermodynamic standard state of a material is defined as follows:

• For liquids and solids, the standard state is the state of the pure substance in its most
stable form at 105 Pa.

• For gases, the standard state is a hypothetical state in which the gas follows the ideal gas
law at a pressure of 105 Pa. (See discussion below.)

• For solutes in solution, the standard state is a hypothetical state in which the solute
behaves like an ideal solution at 1 molal concentration and 105 Pa pressure (see discussion
below).
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Note that in all cases the standard state defines only the form and the pressure; the temperature
must be specified separately. (Thus one can speak of the standard state at 298 K, as distinct
from the standard state at 77 K.)

The first of these conditions is straightforward enough. For example, the standard state of water
at 298 K is liquid water under 105 Pa, while the standard state of water at 270 K is ice under 105

Pa of pressure.
The situation is more complicated for gases and solutes. In both cases, the standard state is

defined as a hypothetical state where the material follows idealized equations of state. The first of
these, the ideal gas law, we’ve already discussed in some detail; the laws for ideal solutions we’ll cover
later in the semester. The reason for choosing these hypothetical states (as opposed to the real state
of the system at, say 105 Pa or 1 molal concentration) is that it creates a common reference state
for all substances, regardless of how far they actually deviate from ideality. Since real gases obey
the ideal gas law at sufficiently low pressure, and since real solutions obey the ideal solution laws at
sufficiently low concentration, thermodynamic properties in the hypothetical “standard state” can
be tabulated by

1. Measuring the real thermodynamic properties of the substance in the low pressure/low con-
centration limit and then

2. Using the ideal gas/ideal solution laws to extrapolate those properties to the standard condi-
tions of 105 Pa and/or 1 molal concentration.

These extrapolated values define the hypothetical “standard state” for real gases and solutions.
Note that, under the ideal gas law, the enthalpy is actually a function only of temperature:

H = U + PV =
3

2
nRT + nRT =

5

2
nRT, Ideal gas. (129)

Thus the enthalpy of an ideal gas at a fixed temperature and 105 Pa pressure is identical to the
enthalpy in the low-pressure limit and the same temperature. As a result, enthalpy changes measured
in the standard state are equivalent to enthalpy changes in the low-pressure limit at the same
temperature. So, as far as enthalpy change is concerned, the thermodynamic standard state for a
gas could just as well be defined as the real gas in the low-pressure limit and a fixed temperature.

Unless explicitly stated, we will in this course always assume that gases obey the ideal gas law
and that solutions obey the ideal solution laws (to be introduced later). Thus, unless otherwise
noted, you’ll be able to ignore the distinction between these hypothetical standard states and the
real state of a gas at 105 Pa or the real state of a solution at 1 molal concentration. We draw the
distinction carefully here only so that, if you encounter situations in the future where the distinctions
matter, you won’t be taken by surprise.

In defining the standard state, we repeatedly encountered the quantity 105 Pa, nearly the same
as 1 atm, which is often assigned its own name as a unit of pressure:

One bar of pressure is defined to be 105 Pa, a rough measure of average atmospheric pressure.

12.3 Standard Enthalpies

With these definitions for thermodynamic standard states, we can introduce two important forms
in which enthalpy changes are commonly tabulated:

The standard enthalpy of reaction ∆Ho
rxn, for any given chemical reaction, is the enthalpy

change per molar equivalent of the reaction from the reactants in their standard states to the
products in their standard states.
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The standard enthalpy of formation ∆Ho
f for a compound is the enthalpy change involved

in forming one mole of the compound at its standard state from its elemental components in
their standard states.

The phrase “per molar equivalent” here means that if the stoichiometric coefficient of a given reactant
is ν, then ν moles of that reactant are to be consumed during the reaction. E.g., in one molar
equivalent of the reaction O2 + 2H2 −−→ 2H2O, one mole of O2 and two moles of H2 will be
consumed to form two moles of H2O.

12.4 Reaction Enthalpies from Enthalpies of Formation

As we’ve pointed out repeatedly, the useful thing about H being a state function is that we can
calculate ∆H values for a given reaction as a combination of ∆H reactions that, in combination,
produce the same transformation. One of the most useful such calculation schemes is to calculate
the enthalpy change for a given reaction by taking a difference between the enthalpies of formation
of its products and reactants. If the equation is balanced, the enthalpies of the pure elements will
necessarily cancel each other out in this process, leaving only the ∆Hrxn for the desired reaction.

To be precise, consider the generic chemical reaction

ν1X1 + ν2X2 + ... + νNrXNr −−→ νNr+1XNr+1 + νNr+2XNr+2 + ... + νNr+NpXNr+Np ·

Here the integers ν1, ν2, etc. are the stoichiometric coefficients for the Nr reactants X1, X1, etc.,
while νNr+1, νNr+2, etc. are the stoichiometric coefficients for the products XNr+1, XNr+2, etc. The
enthalpy of reaction can then be calculated as

∆Ho
rxn =

products∑
i

νi∆H
o
f,i −

reactants∑
i

νi∆H
o
f,i. (130)

Here ∆Ho
f,i is the standard enthalpy of formation of species i. Note that, strictly speaking, this

relation is valid only if the various reactants and products are physically separated from each other
both before and after the reaction. In general, the total enthalpy of a mixture of compounds (even
at standard state) may differ from what is expected based on the various standard enthalpies of
formation, due to interactions between the different species. Thus, Eq. (130) is strictly valid only
if all reactants are separated from each other in the initial and final state and the products are
separated from each other in the final state. For many systems, however, this distinction is not of
great significance, and in this course we’ll generally ignore such corrections.
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13 The Gibbs Free Energy: Indicator for Spontaneity

13.1 The Second Law

The Second Law of Thermodynamics states that for an isolated system, irreversible processes are
always associated with an increase in the system entropy. We mentioned at the time (though
it wasn’t of much practical use then) that this fact can be used as a criterion for determining
whether or not a given physical process can actually happen in the real world: processes during
which an isolated system increases its entropy are irreversible or spontaneous. In the real world,
only spontaneous processes actually occur; reversible processes are an idealization of a spontaneous
process in which the isolated-system entropy change goes to zero. Processes for which entropy
increases can never happen in isolated systems.

Although the Second Law could be used directly to predict whether a process is spontaneous
or not, this isn’t usually very practical: first, because entropy changes aren’t very easy to measure
experimentally and, second, because most real experiments aren’t conducted on isolated systems.
Today’s lecture will introduce a new thermodynamic potential (similar to the energy or enthalpy)
that allows us to make predictions about spontaneity under the much more practical conditions of
constant temperature and constant pressure.

13.2 Processes at Constant Temperature and Pressure

Before we get into the weeds, let’s first make clear what exactly we mean by “constant temperature
and pressure conditions.” In thermodynamics, we typically divide the universe into two parts: a
“system” under study and an “environment” that surrounds and may or may not interact with
the system. When we refer to processes carried out “at constant temperature and pressure condi-
tions”, what we really mean is that the environment maintains a constant temperature and pressure.
Specifically, we are interested in systems that can exchange heat and PV work with the environment
and for which the temperature and pressure of the environment remain constant throughout the
process. Thus if heat or PV work is performed on the environment the associated energy changes
are reversible for the environment. As the system approaches equilibrium with its environment,
its interior temperature and pressure will eventually equilibrate to the constant temperature and
pressure of the environment; but the internal T and P may not necessarily stay constant during the
course of the process, and the physical processes internal to the system may or may not be reversible.
Only at the beginning and end are T and P required to be the same as the constant environment,
and only with the environment are PV work and heat necessarily exchanged reversibly.

As a concrete example, consider the styrofoam cup we discussed in a previous lecture. If a
chemical reaction carried out inside the cup produces heat, the temperture inside the cup will very
likely not be constant throughout the reaction. However, since the styrofoam cup releases that heat
to the environment very slowly – and because the large volume of air in the room is presumably
heated only very slightly by the reaction – the temperature and pressure of the air around the cup
stays essentially constant. Thus, as far as the environment is concerned, the process occurs reversibly
at constant T and P . Within the cup – and within the thin boundary layer of styrofoam that forms
the interface with the environment – the process may very well not be reversible and may very well
not occur with constant temperature and pressure. As we’ll see, however, it’s possible to predict
sponteneity of even such poorly defined processes, so long as the environment is well-behaved.

13.3 The Gibbs Free Energy

Now, as stated previously, the introduction of new thermodynamic potentials usually involves taking
an existing potential and getting rid of some contributions to it that are either inconvenient or
uninteresting. And this is exactly what we’re going to do here. In looking for a “spontaneity
predicting” potential for constant P/constant T processes, we might think at first of the enthalpy.
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We know already that the change in enthalpy is equivalent to the heat passing into the system at
constant P . Intuitively, we tend to associate spontaneous processes with the production of heat (as
in the reaction of acids and bases), i.e., to the condition that ∆H be negative. Physically, this is
grounded in the fact that heat released to the environment increases the entropy of the environment.
Because heat is released to the environment reversibly, the entropy change for a constant-temperature
environment

∆Senv = −∆Hsys

T
(131)

is positive when ∆Hsys is negative (i.e., for exothermic processes) and negative when ∆Hsys is
positive (i.e., for endothermic processes). This increase in entropy of the environment helps to
make the overall entropy change for the system + environment more positive. For this reason,
exothermic processes tend to be spontaneous at constant T . But this correlation is not universal:
there are exothermic reactions that are not spontaneous, and there are endothermic reactions that
are spontaneous.

The problem, of course, is that the entropy increase of the environment in an exothermic process
can be offset by a decrease in the entropy of the system itself. Taking the system and environment
together to form an isolated “super system” the Second Law dictates that the process will be
spontaneous if

∆Ssys + ∆Senv = ∆Ssys −
∆Hsys

T
> 0 (132)

or, equivalently, if

∆Hsys − T∆Ssys < 0. (133)

Since T is constant, we can bring the factor of T inside the ∆ sign to find that

∆Hsys −∆ (TSsys) = ∆(H − TS) < 0 (134)

is a universal criterion for the spontaneity of processes in a system interacting with an environment
at constant temperature and pressure. Effectively, in subtracting the factor TS, we’re subtracting
off the contribution of the system entropy change from the system enthalpy change, a metric for the
entropy change of the environment. What’s left behind is the total entropy change of the system
and its environment, multiplied by an overall factor of −T .

The net result is the definition of a new thermodynamic potential:

The Gibbs Free Energy of a system is defined by the relation

G ≡ H − TS = U + PV − TS. (135)

As we’ve seen, the Second Law implies that

In a system interacting with a constant temperature, constant pressure environment, a given
process is spontaneous if and only if

∆Gsys < 0. (136)

The process is reversible if ∆G = 0.

Just as we earlier introduced the terms “exothermic” and “endothermic” to describe the enthalpy
change of a process, it’s useful to introduce two new terms to describe Gibbs free energy changes:
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An exergonic process is one for which ∆G < 0.

An endergonic process is one for which ∆G > 0.

13.4 Standard Free Energies

This property of the Gibbs free energy makes it exceptionally useful in characterizing the thermo-
dynamics of chemical reactions. To make use of this property, however, we have to have simple ways
to calculate ∆G for a given reaction under various circumstances. Just like with ∆H, it turns out
that, in many cases, it’s possible to calculate ∆G values from standardized ∆G values at standard
conditions. To this end we define

The Standard Gibbs Free Energy ∆Go
rxn of a reaction is the Gibbs free energy change per

molar equivalent of the reaction from the reactants in their standard states to the products in
their standard states.

The Standard Gibbs Free Energy of Formation ∆Go
f for a compound is the Gibbs free

energy change involved in forming one mole of the compound at its standard state from its
elemental components in their standard states.

In the coming lectures, we’ll see how reaction free energies under nonstandard conditions can be
calculated from these standard values.

13.5 Beware the Temperature!

In calculating free energy (or enthalpy) changes from standard values, it’s important to keep in
mind that standard enthalpy and free energy values are functions of temperature. A frequent error
in applying thermodynamic equations is to assume that a ∆Go value measured at 298 K can be
applied to reactions at other temperatures. Although ∆Ho and ∆Go values are often recorded at
298 K, the temperature is not part of the definition of a standard state. Standard enthalpy and free
energy values can be recorded at any temperature, so long as the reactants and products are in their
standard states for that temperature.

Part of the confusion here is that many literature measurements are reported at standard tem-
perature and pressure (STP), a set of conditions that does define both a pressure (1 bar) and a
standard reference temperature. Unfortunately, even the definition of STP conditions is somewhat
controversial, with different organizations using different values of the temperature as “standard”.
(See, for example, the Wikipedia article on the topic: https://en.wikipedia.org/wiki/Standard_
conditions_for_temperature_and_pressure.) In this course, we will never use the designation
“STP” to define experimental conditions. Only the phrase “standard state” – as defined in Section
12.2 – will be used to define pressure and physical state; the temperature will always be specified
explicitly.
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14 The Gibbs Free Energy of Ideal Gases

14.1 ∆G under Nonstandard Conditions

Now that we know something about the physical significance of the free energy, let’s look at how we
can determine it for a given chemical reaction. In particular, we want to know: Given the standard
free energy value ∆Go

rxn for a given reaction, how can we calculate the free energy under other,
nonstandard conditions? Two circumstances in which we can answer this question exactly are for
ideal gases and ideal solutions. We’ll examine first Gibbs free energies for ideal gas mixtures and
then discuss the properties and free energy changes of ideal solutions.

14.2 Ideal Gas Mixtures and Partial Pressure

Before we discuss free energy changes, we need first to establish some ground rules for dealing with
ideal gas mixtures. Recall that our fundamental assumption in dealing with ideal gases is that the
gas particles do not interact with each other. As a result, in a fixed volume V that contains a mixture
of several ideal gases at temperature T , the pressure exerted on the walls by each gas is exactly the
same as the pressure it would exerted on the walls in the absence of all the other gases. Let’s say,
for example, that the volume contains n1 moles of gas number 1, n2 moles of gas number 2, and so
on for the remaining gases. Then each gas exerts a pressure Pi = niRT

V on the walls of the container,
just as it would if the other gases were absent. Moreover, since the forces exerted by each gas are
additive, the total pressure is just the sum of the partial pressures, i.e.,

Ptot =
∑
i

Pi. (137)

In summary:

The partial pressure of a particular gas in an ideal gas mixture

Pi =
niRT

V
(138)

is the contribution the particles of that gas make to the total pressure

Ptot =
∑
i

Pi =
ntotRT

V
(139)

where ntot =
∑
i ni is the total number of gas particles in the system.

14.3 Free Energy of an Ideal Gas

With this in mind, let’s see what we can say about the the difference between the free energy of an
ideal gas mixture at arbitrary partial pressures, relative to the free energy at standard conditions.
To begin, recall from Eq. (111) that, at constant temperature, we can calculate the entropy change
for a single ideal gas between any two states as

S2 − S1 =
3

2
nR ln

T2

T1
+ nR ln

V2

V1
. (140)

If the two states have the same temperature, this simplifies to

S2 = S1 + nR ln
V2

V1
(141)

= S1 − nR ln
P2

P1
, (142)
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where in the second line we have used the ideal gas equation of state to make the replacement
V2

V1
= nRT ·P2

P1·nRT = P1

P2
. In particular, if S1 is the entropy of the gas under standard conditions, then at

any other pressure (but the same temperature)

S = So − nR ln
P

P o
(143)

where P o = 1 bar is the pressure at standard state.
Now, since the enthalpy of an ideal gas

H = U + PV =
3

2
nRT + nRT =

5

2
nRT (144)

is a function only of temperature (i.e., is independent of pressure so long as T remains constant),
we can calculate

G = H − TS = Ho − T
(
So − nR ln

P

P o

)
(145)

= Ho − TSo + nRT ln
P

P o
(146)

= Go + nRT ln
P

P o
(147)

In what follows, it will be convenient to work with the molar free energy of the gas

Ḡ ≡ G

n
(148)

which can be calculated as

Ḡ = Ḡo +RT ln
P

P o
. (149)

14.4 Reaction Free Energies of Ideal Gas Mixtures

Given this start, it’s straightforward to calculate reaction free energies for ideal gas mixtures at
arbitrary pressures. Consider the generic reaction

reactants∑
i

νiXi −−→
products∑

i

νiXi, (150)

where we assume that all species are in the gas phase. Since the ideal gas particles don’t interact
with each other, the total Gibbs free energy change for the reaction is just the total Gibbs free energy
of one stoichiometric equivalent of products minus the total Gibbs free energy of one stoichiometric
equivalent of reactants. The free energy for the reaction is then

∆Grxn =

products∑
i

νiḠi −
reactants∑

i

νiḠi. (151)
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Now, using Eq. (147) to calculate the free energy of each component, this implies that

∆Grxn =

products∑
i

(
νiḠ

o
i +RT ln

Pi
P o

)
−

reactants∑
i

(
νiḠ

o
i +RT ln

Pi
P o

)
(152)

= ∆Go
rxn +RT

products∑
i

νi ln
Pi
P o
−RT

reactants∑
i

νi ln
Pi
P o

(153)

= ∆Go
rxn +RT ln


∏products
i

P
νi
i

(P o
i )
νi∏reactants

i
P
νi
i

(P o
i )
νi

 . (154)

If each partial pressure Pi is reported in bar, the factors P o can be set to unity and we obtain simply

∆Grxn = ∆Go
rxn +RT ln

∏products
i [Pi]

νi∏reactants
i [Pi]

νi
, all pressures in bar. (155)

Here the notation [Pi] means “the numerical value without units,” where the units must be specified
explicitly in the context. Note that this would not be correct if some other reference were used
for pressure, e.g., Torr or Pa, since then the reference pressure P o would have a numerical value
different from 1 and could no longer be dropped from Eq. (154).

14.5 Entropy of Mixing

Although not necessary to obtain these results, it’s worth noting here that formula Eq. (142) can be
applied very simply to calculate the entropy of mixing of a mixture of ideal gases. Imagine that we
have initially two ideal gases in separate chambers and at the same pressure Ptot and temperature
T . If we now open a stopcock that connects the two chambers, the gases will irreversibly mix with
each other, as particles from each side diffuse into the other chamber. The total pressure remains
constant during the mixing process at

n1RT

V1 + V2
+

n2RT

V1 + V2
=
n1 + n2

V1 + V2
RT =

PtotV1

RT + PtotV2

RT

V1 + V2
RT = Ptot. (156)

What is the entropy change associated with this process?
Because the gases are assumed to be ideal, we know that the particles don’t interact with each

other. As a result, the entropy of the final mixture must be exactly the sum of the entropies of each
gas occupying the new total volume of the combined chambers. Since each gas begins at pressure Ptot

and ends at its own partial pressure Pi = niRT
Vtot

, Eq. (142) implies that

∆Smix = ∆S1 + ∆S2 = −n1R ln
P1

Ptot
− n2R ln

P2

Ptot
. (157)

More generally:

The entropy of mixing of an ideal gas mixture is the change in system entropy when the
separate gaseous components are combined at constant temperature and pressure:

∆Smix =
∑
i

∆Si = −
∑
i

niR ln
Pi
Ptot

. (158)

Expressed differently, this result can be written

∆Smix =
∑
i

∆Si = −
∑
i

niR lnxi (159)

where xi is the mole fraction of species i:
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The mole fraction xi of a given species i in a mixture is

xi =
ni
ntot

, (160)

where ntot =
∑
i ni is the total number of moles in the system.

We’ll make use of this last result in the next lecture when we study the properties of ideally dilute
solutions.
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15 Gibbs Free Energies of Ideally Dilute Solutions

15.1 Motivation

The relation just derived for the Gibbs free energy of ideal gases as a function of pressure are
extremely useful in making predictions about the spontaneity of chemical reactions in the gas phase.
By measuring ∆Go

rxn at standard pressures, the free energy change for a reaction at any other set of
pressures (and the same temperature) can be calculated directly, allowing us to predict (remarkably
accurately, in many cases) the conditions under which a reaction will or will not “go”.

However, most of wet lab chemistry (and biochemistry and molecular biology) is performed in
the condensed phase. This is particularly true in questions of cellular metabolism where nearly all
of the key reactions occur in solution. The question then arises: Can we obtain a similar expression
for reaction free energies as a function of concentration in solution?

The answer turns out to be “yes”, with some caveats. Molecular dynamics in the condensed
phase are much more difficult to treat from a “first principles” perspective, since (in contrast to our
relatively simple derivation of the ideal gas law earlier in the semester) intermolecular interactions
most certainly cannnot be neglected in solution. In fact, intermolecular interactions are what pre-
vents a solution from evaporating into the gas phase! Nonetheless, with some simple assumptions
about how the various species in solution interact with each other, we can derive a relation for the
Gibbs free energy of a solution that is remarkably similar to that for the ideal gas.

15.2 Ideally Dilute Solutions

The fundamental assumption we’ll make in handling solution thermodynamics is that the solution
is very dilute:

An Ideally Dilute Solution is a solution in which the concentration of one single species,
termed the solvent is much greater than the concentration of any of the other species, each
of which is termed a solute. In particular, the concentration of each solute is assumed to be
sufficiently low that the energy and volume of the solution are additive in the number of moles
of each species:

U =
∑
i

niui(T ) (161)

V =
∑
i

nivi(T ) (162)

and that the entropy is additive up to an ideal-gas correction for the entropy of mixing

S =
∑
i

niσi(T )−R
∑
i

ni lnxi (163)

where xi is the mole fraction of species i. Here ui(T ), vi(T ), and σi(T ) are (respectively)
molar energy, volume, and entropy functions for each species i that depend on temperature but
not on concentration.

The first two of these equations are straightforward to understand physically: Each species in the
solution carries with it an associated molar energy and volume reflecting the local physical properties
of the particles of each species. Averaged solute-solvent interactions are lumped into these terms
and, as a result, they are specific to the solvent/solute system under consideration. What we’re
neglecting in these equations is any interaction between solute particles; each solute is assumed to
interact independently with the solvent around it, and this is why the equations are linear in ni.
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The last equation [Eq. (163)] looks a bit more complicated but also has a simple physical explana-
tion. The first term is a sum of molar entropy functions, just like the energy and volume functions in
the preceding equations. The last term represents the entropy of mixing for distributing the various
particles throughout the system. In fact, this term is identical to the ideal gas entropy of mixing in
Eq. (159).

Note that, since these expressions are to be applied in the limit of infinite dilution, the molar
functions usolv, vsolv, and σsolv must be identical to the corresponding functions for the pure solvent.
This is not necessarily the case for the solutes. In general, these functions may differ substantially
from their values in the pure solute.

15.3 Reaction Free Energies

With these definitions, we can easily calculate the Gibbs free energy of an ideally dilute solution:

G ≡ U + PV − TS (164)

=
∑
i

niui(T ) + P
∑
i

nivi(T )− T
∑
i

niσi(T ) +
∑
i

RTni lnxi (165)

=
∑
i

niḠi, (166)

where on the last line we have introduced the molar Gibbs free energy of each species:

Ḡi = ui + Pvi − Tσi +RT lnxi. (167)

Now, the first three terms in this expression are independent of concentration and are thus
identical (for a fixed temperature) at standard and nonstandard conditions. Only the last term varies
with concentration and so determines the difference between standard and nonstandard reaction free
energies. We can thus calculate the Gibbs free energy of reaction as

∆Grxn −∆Go
rxn =

products∑
i

νiḠi −
reactants∑

i

νiḠi −

(
products∑

i

νiḠ
o
i −

reactants∑
i

νiḠ
o
i

)
(168)

=

products∑
i

νiRT (lnxi − lnxo
i )−

reactants∑
i

νiRT (lnxi − lnxo
i ) (169)

= RT ln

∏products
i

(
xi
xo
i

)νi
∏reactants
i

(
xi
xo
i

)νi . (170)

Using this formula, we can calculate reaction free energies in ideal solutions at arbitrary concentra-
tions, assuming we know the value of the reaction free energy at standard conditions.

15.4 Concentration Units

For real-world applications, it’s often more useful to deal in concentration units like molarity and
molality than in the mole fractions xi in the last equation. Recall the definitions:

The molarity Cmolar
i of solute i in solution is the number of moles of solute per liter of solution.

The molality Cmolal
i of a solute i in solution is the number of moles of solute per kilogram of

solvent.
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In dilute solutions (where the total number of moles differs only negligibly from the number of moles
of solvent), the three concentration units can be interconverted as follows:

1000 · xi
Msolv

= Cmolal
i =

Cmolar
i

ρsoln
(171)

where Msolv is the molecular weight of the solvent in g/mole, and ρsoln is the density of the solution
in kg/L. Now, since in our free energy formula, the mole fraction always appears in the ratio xi

xo
i
,

the conversion factors in switching between concentration units always cancel with each other. Thus
Eq. (170) can be written in the three equivalent forms:

∆Grxn = ∆Go
rxn +RT ln

∏products
i

(
xi
xo
i

)νi
∏reactants
i

(
xi
xo
i

)νi (172)

= ∆Go
rxn +RT ln

∏products
i

(
Cmolar
i

Co,molar
i

)νi
∏reactants
i

(
Cmolar
i

Co,molar
i

)νi (173)

= ∆Go
rxn +RT ln

∏products
i

(
Cmolal
i

Co,molal
i

)νi
∏reactants
i

(
Cmolal
i

Co,molal
i

)νi , (174)

where in each case the denominator contains the concentration at standard state. Since solution
standard states are taken to be of unit molality, the factor of Co,molal

i = 1 mol/liter can be omitted
in the last equation to give

∆Grxn = ∆Go
rxn +RT ln

∏products
i

[
Cmolal
i

]νi∏reactants
i

[
Cmolal
i

]νi , all concentrations in molality (175)

so long as all concentrations are expressed in molal units. Similarly, since the density of pure water

ρH2O ≈ 1 kg/L (176)

is a very good approximation to the density of dilute aqueous solutions, the molal and molar units
are equivalent for ideal aqueous solutions. Thus

∆Grxn = ∆Go
rxn +RT ln

∏products
i

[
Cmolar
i

]νi∏reactants
i

[
Cmolar
i

]νi , aqueous solution
all concentrations in molarity

(177)

15.5 Biochemical Standard State

In applying these formulas to biological systems, it’s often useful to work with a slightly different
set of standard states than are conventional in more general thermodynamic systems. The motiva-
tion for these changes is that biochemical reactions happen almost university in aqueous solution,
typically with solute concentrations low enough that the mole fraction of the water is very nearly
unity, and the density of the solution is very close to that of pure water. As a result, molar con-
centrations become equivalent to molal concentrations, and, most importantly, the mole fraction of
water remains always very close to unity. Because the water concentration never changes, it is both
irrelevant and somewhat inconvenient to include the concentration of water in most calculations.

For example, in the hydrolysis of ATP,

ATP + H2O −−→ ADP + Pi,
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we should in principle calculate the ∆G for the reaction as

∆G = ∆Go +RT ln
[ADP][Pi]

[ATP][H2O]
, (178)

since water participates as a reactant. But since the reaction occurs in dilute solution, the con-
sumption of H2O by the process changes the mole fraction of water only negligibly. Thus the molar
concentration of H2O would be left constant at 55.5 moles/liter regardless of the concentration of
the other species or the extent of the reaction. Although there’s nothing incorrect about including
this factor of 55.5 in the calculation, it’s more convenient to simply redefine ∆Go to include it. In
particular, if [H2O] is always 55.5 moles/liter (under both standard and non-standard conditions),
we can rewrite the last expression as

∆G = ∆Go −RT ln(55.5) +RT ln
[ADP][Pi]

[ATP]
. (179)

If we now define

∆Go′ ≡ ∆Go −RT ln(55.5), (180)

we can calculate ∆G as

∆G = ∆Go′ +RT ln
[ADP][Pi]

[ATP]
. (181)

Thus, we can drop the water concentration in all subsequent calculations of ∆G and – so long as the
water concentration is effectively 55.5 moles/liter under both standard and non-standard conditions,
the relationship between ∆G and ∆Go′ will remain unchanged.

This reformulation is the basis for the biochemical standard state convention:

Biochemical Standard States are characterized as follows

• All reactions are assumed to occur in dilute aqueous solution.

• The concentration of each solute is 1 molar.

• The pH of the solution is 7.0. Further, all species capable of protonation/deprotonation
occur in the ratio of conjugate acid/conjugate base that occurs naturally at pH 7.

• The concentration of water is by convention set to 1 (i.e., ignored) in all ∆G calculations
in which water participates as a reactant or product.

Thermodynamic quantities at biochemical standard state are denoted with a superscript o and
a prime, e.g., ∆Go′.

Note that “setting [H2O] to one” in this convention is not because water doesn’t participate or
because the concentration of water is actually one molar. It’s simply a convention, enabled by the
fact that the true concentration of water is “absorbed” into the ∆Go′ value. This is why in general

∆Go′ 6= ∆Go. (182)
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16 Chemical Equilibrium

16.1 Equilibrium at Constant Temperature and Pressure

We noted earlier that the Gibbs free energy of a process can be used as an indicator of spontaneity at
constant pressure and temperature. Processes for which ∆G is negative were seen to be spontaneous,
while processes for which ∆G is positive were seen to be physically forbidden. It is in some respects
even more interesting to examine the case ∆G = 0. What can we say for such processes?

In this case, neither the forward process nor the reverse process is spontaneous. The only
conclusion is that the process is at equilibrium: it can progress neither in the forward nor the reverse
direction and must therefore remain unchanged with time. This principle is an exceptionally useful
tool for characterizing the equilibrium states of chemical reactions and other everyday physical
processes.

At constant temperature and pressure, a process is at equilibrium if and only if the ∆G asso-
ciated with it is exactly zero.

16.2 Equilibrium in Chemical reactions

Beginning from our molar expression for reaction free energies in dilute solutions [Eq. (175)], we can
apply this principle by setting ∆G = 0 to obtain at equilibrium:

∆Grxn = ∆Go
rxn +RT ln

∏products
i

[
Cmolal
i

]νi∏reactants
i

[
Cmolal
i

]νi , all concentrations in molality (183)

This leads us to define the equilibrium constant

The equilibrium constant for a chemical reaction with stoichiometric coefficients νi is

Keq ≡
∏products
i

[
Cmolal
i

]νi∏reactants
i

[
Cmolal
i

]νi , all concentrations in molality (184)

From this value, the standard Gibbs free energy of reaction can be calculated as

∆Go
rxn = −RT lnKeq. (185)

Conversely, given ∆Go
rxn, the equilibrium constant can be calculated as

Keq = e−
∆Go

rxn
RT . (186)

Equivalent results hold for gas-phase reactions if we replace all molar concentrations with pres-
sures in units of bar.

Intuitively, the equlibrium constant tells us how far a reaction will progress. A Keq � 1 indicates
that the equilibrium concentrations in the numerator (i.e., those of the reaction products) are much
larger than those in the denominator (i.e., those of the reactants). Thus a very large Keq indicates
that a reaction strongly favors formation of products or will “go to completion”. Conversely, if
Keq � 1, then the equilibrium concentration of products must be much less than the equilibrium
concentration of reactants; thus the reaction favors the reactants at the given temperature.

A qualitative statement of these results is given by the statement of Le Chatelier:
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Le Chatelier’s Principle states that chemical equilibrium will respond to a change in external
constraints in such a way as to partially offset the external change.

So, for example, if we begin with a generic reaction

A + B↔ C

that is initially at equilibrium and then add a large quantity of reagent B to the mix, the reaction
will progress forwards to create more of product C. Conversely, if we add a large quantity of C,
the reaction will proceed backwards to produce A and B. If all chemicals are in the gaseous state,
increasing the total pressure on the system will push the reaction toward the product C since there
are fewer moles of gas on this side of the reaction and so the numerator of Keq (indicating product
pressure) is increased by a smaller factor than the denominator (the product of the pressures of
both reactants). Finally, the expressions we’ll derive in the next section show that if the reaction
produces heat (i.e., is exothermic) then raising the temperature pushes the reaction away from the
product. Conversely, if the reaction consumes heat (i.e., is endothermic), then raising the temperature
pushes the equilibrium toward products. Thus, for the purpose of analyzing shifts in equilibrium
with temperature, heat consumed in a reaction can loosely be thought of as a reactant, and heat
produced can be thought of as a product.

16.3 Driving Forces in Chemical Reactions

This discussion naturally leads us to a more quantitative discussion of the question: What determines
whether a reaction favors products or reactants at a given temperature? In other words, what are
the driving forces behind chemical reactions?

There are several levels at which we can answer this question. Ultimately, of course, all real-world
processes are driven by the Second Law requirement to increase entropy. Since the universe itself is
(so far as we know) an isolated system, the Second Law implies that all real processes must increase
the total entropy of the universe. As we’ve seen, in the specific context of a system held at constant
temperature and pressure, this implies that ∆G for any spontaneous process must be negative. As
we’ve just seen, for ideally dilute solutions and ideal gases, this principle can be further extended to
show that ∆Go predicts how far a reaction will proceed at a given temperature.

To get a more physically intuitive interpretation of this statement, let’s split apart ∆Go into its
component parts:

∆Go = ∆Ho − T∆So. (187)

Thus we can identify two distinct contributions or “driving forces” that can push a process toward
completion at constant temperature and pressure:

1. The standard enthalpy change ∆Ho characterizes how much heat is released by the process. A
negative ∆Ho indicates that heat is released into the environment, increasing the environmen-
tal entropy and tending to make the process more spontaneous. Conversely, a positive ∆Ho

indicates that heat is absorbed during the process, lowering the entropy of the environment
and thus tending to oppose the spontaneity of the process.

2. The standard entropy change ∆So characterises how much the entropy of the system increases
during the process. A positive ∆So indicates that (at the specified temperature), the process
increases the entropy of the system, increasing the overall entropy of the universe and thus
tending to make the process spontaneous. Conversely, a negative ∆So indicates that the
entropy of the system decreases, lowering the overall entropy of the universe and tending to
oppose spontaneity.
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How far any specific process will go toward completion depends on the balancing of these two
factors. A strongly endothermic reaction can be made spontaneous by a sufficiently large ∆So,
and a strongly exothermic reaction can be prohibited by a sufficiently negative ∆So. The precise
balance between the two is determined by the temperature. Note that, in general, both ∆Ho and
∆So may themselves depend on temperature, so the balance between the two is, in general, more
complex than a simple linear temperature-dependence. Nonetheless, the sign of each term usually
stays consistent over a significant range of temperatures, so that the intuitive picture of balancing
the contribution of each term to the overall ∆Go remains applicable.

16.4 Energy Storage in Chemical Bonds

In this discussion of “driving forces” in chemistry, it’s worth commenting on the mantra of “energy
storage in chemical bonds” that is often repeated in discussions of biological metabolism. One
common statement is that living systems store energy in “high-energy bonds” such as the phosphate-
phosphate bonds of ATP. Similarly, it’s often stated that in ATP hydrolysis or glucose metabolism,
energy is released through “the breaking of chemical bonds”. Informally, these statements have some
utility, conveying correctly that the release of (Gibbs free) energy is what drives these reactions to
completion.

If interpreted literally, however, both statements are a bit misleading and technically incorrect.
The idea of a “high-energy bond” is itself something of a misnomer. By definition, a chemical
“bond” is an interaction between two atoms that tends to hold the atoms close to each other. This
can only happen if the molecular energy is lower when the two atoms form the bond than when they
dissociate to separate atomic species. (The entropy change for formation of a bond is almost always
negative since the system has far fewer accessible microstates under the constraint of inter-atomic
binding.) For example, the reaction

2O(atomic)→ O2(gas), (188)

is spontaneous at standard conditions precisely because oxygen gas is more stable when the individual
molecules associate into a bonded, diatomic configuration. This increase in molecular stability is
reflected in the fact that the reaction is exothermic. In fact this is the only driving force for the
reaction: the entropy change for the process is negative, since two moles of gaseous reactants combine
to form a single mole of gaseous product. Thus it is actually the formation of the O=O chemical
bond that leads to the release of energy.

Similar principles apply to the ATP hydrolysis reaction:
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Here we break a single P P bond and an O H bond. However, we also form a new O H
bond, along with another new O P bonds. It is actually the formation of the new bonds that
releases energy; if we had stopped only with the breaking of the phosphate bond, the reaction would
be strongly endothermic and very much disfavored.

The take-home message here is not that it’s necessarily incorrect to use the phrase “high-energy
bond” or to talk about energy being “stored in chemical bonds”: it’s just important to keep in mind
what these terms really mean. All chemical bonds lower the energy to some extent relative to the
“no bond” case; otherwise, we wouldn’t call them bonds! It’s just that some bonds lower the energy
more than others. A “high-energy bond” is one that provides relatively less stabilization at the
molecular level; if a chemical reaction replaces some of these “high-energy” bonds with “low-energy”
bonds that provide more stabilization, the reaction will be exothermic and, if the entropy change
is either positive or not too negative, exergonic. This is what drives many metabolic reactions,
including ATP hydrolysis and glucose oxidation.

16.5 Variation of Keq with Temperature: The Van’t Hoff Equation

Eq. (187) above makes obvious that temperature plays a critical role in determining the balance
between reactants and products in chemical reactions. Because of the explicit factor of T in the
−T∆So term, increased temperatures tend to enhance the significance of the ∆So value of a reaction.
When T is close to zero, reactions are driven almost exclusively by the value of ∆Ho, since the T∆So

term is suppressed. Conversely, at high temperatures, the system entropy change tends to dominate
spontaneity.

This relationship can be made more explicit by calculating the derivative of the equilibrium
constant with respect to temperature. The derivative of Eq. (187) with respect to temperature can
be calculated as

d∆Go

dT
=
d∆Ho

dT
− T d∆So

dT
−∆So. (189)

Now, in general ∆Ho and ∆So both depend on temperature, so that the first two terms on the
right hand side of this equation are in general nonzero. However, in many cases these terms depend
rather weakly on temperature. As a result, over a relatively small range of temperatures, one can
usually make the approximation

d∆Go

dT
≈ −∆So. (190)

A more experimentally useful version of the same result is obtained by examining the variation
of lnKeq with the inverse temperature 1/T . Taking the natural log of Eq. (186) gives

lnKeq = −∆Go
rxn

RT
(191)

= −∆Ho
rxn

R

1

T
+

∆So
rxn

R
. (192)

Differentiation of this expression with respect to 1/T gives the Van’t Hoff Equation

Van’t Hoff Equation:

d lnKeq

d(1/T )
= −∆Ho

rxn

R
(193)

which is valid when ∆Ho
rxn and ∆So

rxn are both independent of temperature.
Now, if a series of values for Keq is measured experimentally as a function of temperature (by

actually monitoring the concentration of reactants and products at equilibrium), a very informative
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figure can be obtained by plotting lnKeq versus the inverse temperature 1/T . Such a figure is often
referred to as a Van’t Hoff Plot. According to Eq. (192), if ∆Ho

rxn and ∆So
rxn are temperature-

independent, then lnKeq will vary linearly with 1/T in a Van’t Hoff plot. The slope of the line will
be

Slope = −∆Ho
rxn

R
, Van’t Hoff Plot (194)

and the intercept (where 1/T goes to zero, i.e., T tends to infinity) gives

Intercept =
∆So

rxn

R
. Van’t Hoff Plot (195)

Thus by simply measuring a series of equilibrium concentrations, the standard enthalpy and entropy
changes for the reaction can be calculated. If lnKeq is found not to vary linearly with 1/T , this means
that ∆Ho

rxn and/or ∆So
rxn themselves vary significantly over the temperature range considered.
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17 General Criteria for Equilibrium

17.1 Differential Relations

Our application of the Gibbs free energy to characterize equilibrium processes has so far been limited
to a rather specific context: Chemical reactions in the gas phase or in ideally dilute solutions that
are maintained at constant temperature and pressure. But in fact, the usefulness of G as a metric
for equilibrium extends far beyond these simple cases – even for systems that are not at constant
temperature and pressure. In this lecture, we’ll derive a general mathematical criterion for using
the Gibbs free energy to characterize equilibrium states.

To see how this works, let’s start with a simple example. Suppose we’re interested in a chemical
reaction

A −−→ B

involving the conversion of a single chemical species A to some other species B. The total Gibbs
free energy, Gtot(T, P, nA, nB), for the system depends in general on the temperature, pressure, and
number of moles nA and nB of the two species. Now, if the system is at equilibrium, the conversion
of a small amount of species A to species B must not cause Gtot to decrease – otherwise the process
would be spontaneous and would cause the system state to change. Likewise for the conversion of a
small about of species B to species A. If the system is closed (i.e., cannot exchange matter with the
environment), then the total number of moles is constant, so that if nA changes by a small amount
dn, then nB must change by −dn. Thus we can express our equilibrium condition mathematically
as

dG = G(T, P, nA + dn, nB − dn)−G(T, P, nA, nB) = 0. (196)

In other words, at constant temperature and pressure, the differential change in G when some small
quantity of species A is converted to species B must be identically zero.

Exactly this same argument can be generalized to characterize the dependence of G on any
macroscopic coordinate in a system at equilibrium at constant temperature and pressure:

In a system at constant temperature and pressure, the Gibbs free energy is minimized at
equilibrium. In other words, for an equilibrium system at constant temperature and pressure

dG = 0. (197)

17.2 Arbitrary Systems

So far, this principle allows us only to characterize equilibrium for systems that are held at constant
temperature and pressure. The remarkable thing is that the finding can be extended to characterize
the equilibrium states even of systems that are not constrained to have constant temperature and
pressure.

To see how this works, let’s look at a concrete example. Suppose we’re interested in a chemical
reaction taking place in a closed, thermally isolated vessel at constant volume. Neither pressure nor
temperature is fixed during this process. If the reaction proceeds in a direction that produces heat,
the system temperature will increase. If the reaction proceeds in a direction that adds more gas to
the system, the pressure will increase. If the reaction is irreversible, temperature and pressure may
not even be well-defined during the course of the reaction!

Nonetheless, the system will eventually reach equilibrium. Eventually, the system will reach a
point where the reaction ceases to progress and the temperature and pressure both stabilize at some
set of values Tfinal and Pfinal that, at present, we can’t predict a priori. What can we say about the
system in this final, equilibrium state?
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To answer this question, think about what would happen if we added one more step to our
experiment. Suppose that, after the reaction reached equilibrium, we were to put the system in
thermal contact with an outside reservoir at constant temperature Tfinal and inside of a piston with
a constant external pressure of Pfinal. In other words, we now allow the system to interact with an
isothermal and isobaric environment, with parameters that exactly match the final equilibrium state.
What would happen? Nothing! Because the system already has the same temperature and pressure
as the environment, the equilibrium state of the system will not be modified by the transition from
complete isolation to isothermal/isobaric conditions.

Now think about what this tells us about the equilibrium state. In the isothermal/isobaric case,
we know already that equilibrium is characterized by the fact that the dG must be exactly zero
for any differential change that doesn’t modify T or P . But, since G is a state function and since
the equilibrium state is identical in the two cases, this statement must also be true in the original
experiment. Thus, even for the isolated system, it remains true that, at equilibrium, G is minimized
with respect to all coordinates other than temperature and pressure. Thus our previous result
actually implies the much more general statement:

If the Gibbs free energy for any system can be expressed as a function G(T, P, x1, ..., xN ) of
temperature, pressure, and the N independent variables x1, ..., xN , then at equilibrium

dG = 0 (198)

for any infinitesimal displacement of the variables dxi with P and T held fixed.

17.3 The Chemical Potential

Having arrived at this general differential criterion for equilibrium, it’s worth putting this finding in
the context of our earlier differential expression of the First Law of Thermodynamics. Earlier in the
course, we saw that the energy of a single-component thermodynamic system could be expressed as

dU = dQ+ dW = TdS − PdV, (199)

so long as all processes are carried out reversibly, so that both the TdS and PdV terms remain well-
defined. Now, for reversible processes, this expression is valid for closed thermodynamic systems;
but what about a system that can exchange matter with the environment? In this case, the energy
U depends also on the number of moles ni of each chemical species in the system. If an infinitesimal
amount dni of species i is added to the system, a small energy change occurs as well. Mathematically,
this leads to the more general law

dU = TdS − PdV +
∑
i

µidni, (200)

where the quantity µi defines the variation of energy with displacements in ni (with all other variables
held constant) and is termed the chemical potential :

The chemical potential of a thermodynamic system is defined as

µi ≡
(
∂U

∂ni

)
S,V,nj 6=i

. (201)

What exactly is this new creature, the “chemical potential”? From the definition just given, µi
represents how much the energy increases when a small amount of species i is added to the system
at constant volume and entropy. While mathematically precise, this definition isn’t very physically
informative – or very easy to measure. Experimentally, it’s quite difficult to devise a process in
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which a system exchanges matter with its environment but, at the same time, maintains the same
entropy. Fortunately, the situation becomes much clearer if our differential relation is rewritten in
terms of Gibbs free energies.

Recall that, by definition G ≡ U − TS + PV . As a result:

dG = dU − SdT − TdS + PdV + V dP (202)

= TdS − PdV +
∑
i

µidni − SdT − TdS + PdV + V dP (203)

= V dP − SdT +
∑
i

µidni. (204)

Mathematically, this expression defines the variation of Gibbs free energy with small changes in P ,
T , or dni. In complete analogy to Eqs. (200) and (201), µi in this case represents the variation of G
with respect to ni with all other variables held constant. Thus, in place of Eq. (201), we could just
as well have defined

µi ≡
(
∂G

∂ni

)
T,P,nj 6=i

. (205)

In this case, µi represents the change in Gibbs free energy when a small amount of species i is
added at constant temperature and pressure. Practically, this is a much easier process to control
experimentally than conducting measurements at constant entropy!

17.4 The Chemical Potential as a Metric for Equilibrium

With these definitions, we can, for processes involving the transformation of matter from one form
to another, give a general criterion for equilibrium in terms of the chemical potential. Return, for
instance, to our earlier example of a closed system involving conversion of one chemical species A
into another species B. If a small quantity dnA of species A is created from species B, the differential
free energy is

dG = µAdnA + µBdnB (206)

= (µA − µB) dn (207)

since dnA = −dnB . At equilibrium, this variation must be identically zero, regardless of the actual
value of dn. Thus our condition for equilibrium becomes

µA = µB . (208)

Thus, for any two species in a one-to-one interconversion equilibrium, the chemical potentials must
be identical. This principle can be applied immediately to systems of phase equilibrium where a
single species is transferred back and forth between two distinct physical phases:

At equilibrium, the chemical potential for a given molecular species must be the same in all
phases.

More generally, the same argument shows that

A necessary and sufficient condition for the generic process

ν1X1 + ν2X2 + ... + νNrXNr −−→ νNr+1XNr+1 + νNr+2XNr+2 + ... + νNr+NpXNr+Np
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to be at equilibrium is that

products∑
i

νiµi −
reactants∑

i

νiµi = 0. (209)

17.5 The Chemical Potential is the Molar Gibbs Free Energy

An even more intuitive interpretation is offered for µi by conducting a simple thought experiment.
Suppose we were to build a thermodynamic system up from scratch, starting with nothing and
adding one atom at a time up to some final composition of ni moles of each molecular species i. At
all times during the process, we keep all species in equilibrium with each other in fixed proportions
and at constant temperature and pressure. At each infinitesimal step in this process, the Gibbs free
energy increases by a quantity µi when the infinitesimal quantity dni is added to the system, i.e.,

dG =
∑
i

µidni. (210)

Thus at the end of the the total Gibbs free energy can be written as

G(n1, ..., nN ) =
∑
i

∫ ni

0

dniµi. (211)

Now, because the chemical composition, temperature, and pressure remain constant throughout the
process µi is also constant for each species. The chemical potential can thus be pulled out of the
integral expression, and we obtain simply

G(n1, ..., nN ) =
∑
i

µini. (212)

The chemical potential µi can thus be understood rigorously as a molar Gibbs free energy of species
i, i.e., the free energy contributed to the system by each mole of species i.

17.6 Differential Relations

While we’re discussing the differential relation [Eq. (204)] for the Gibbs free energy, it’s worth
pointing out one other useful result that follows immediately from this equation. As a general
rule of calculus, whenever we have a well-behaved function f(x1, ..., xN ) whose differential can be
expressed in the form

df = g1dx1 + g2dx2 + ...+ gNdxN , (213)

the coefficients gi must satisfy the relation

gi =

(
∂f

∂gi

)
xj 6=i

. (214)

Intuitively, this just means that, if gi defines how f varies with small displacements in xi, then it
must by definition be the differential of f with respect to xi.

This statement may seem obvious, but it leads to some otherwise non-obvious relations in ther-
modynamics. In particular, if we apply it to Eq. (204) we obtain the relations

V =

(
∂G

∂P

)
T,ni

(215)

S = −
(
∂G

∂T

)
P,ni

. (216)

Both of these will be very useful in the next section when we discuss phase equilibrium.
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18 Colligative Properties

In the last section, we derived a general criterion for thermodynamic equilibrium, namely that
the Gibbs free energy must be minimized with respect to the displacement of any coordinates at
constant temperature and pressure. In the particular context of phase equilibria, we showed that
a general criterion for equilibrium is that the chemical potential for a given species be the same in
all phases. In this section, we’ll use this reuslt to derive explicit laws for the colligative properties
of dilute solutions, including vapor pressure suppression, boiling point elevation, and freezing point
depression.

A colligative property of a solution is a property that depends only on the ratio of the total
mole fraction of solute molecules and not on the specific chemical properties of each solute.

Colligative properties end up being very useful in real-life applications. For example, maple syrup
is produced by boiling down sap from the sugar maple tree until the boiling point of the increasingly
concentrated solution reaches a fixed reference temperature. In this section, we’ll find a formula
that allows us to calculate directly (if approximately) the concentration of sugar in maple syrup at
the final boiling temperature.

18.1 Vapor Pressure

Recall from our earlier discussion of phase diagrams that a P/T phase diagram features coexistence
curves where the various phases exist in equilibrium with each other. In particular, the liquid/vapor
coexistence curve defines the set of temperatures and pressures at which a liquid will coexist in
equilibrium with its vapor. If we view the sequence of pressures defined by this curve as a function
of the temperature, we can read the coexistence curve as a plot of the solvent’s vapor pressure:

The vapor pressure of a solvent is the pressure at which its liquid and vapor phases coexist
in equilibrium at a given temperature.

Suppose, for example, that we were to take 1 liter of liquid water at 20 oC and place it in an
evacuated cylinder (i.e., under vacuum) in a total volume of 2 liters. What would happen? The
water will not, of course, stay all in the liquid state under a total vacuum. Instead, some of the
water will evaporate until the pressure of the water vapor above the solution reaches equilibrium
with the evaporation of water from the liquid phase. The pressure at which the water liquid and
vapor reach equilibrium is, by definition, the vapor pressure.

Now, what would happen if instead of pure water the liquid contained a low concentration of
some solute, say table sugar? A liquid/gas equilibrium will again be established, but, as it turns out,
the vapor pressure above the solution would be diminished. Physically, this effect can be understood
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as a result of the fact that the sugar (which itself has a negligible vapor pressure) interferes with the
evaporation of the water, preventing some of it from leaving the solution and, as a result, lowering
the overall vapor pressure. Our goal now is to provide a quantitative description of this effect, using
our recently established results on the free energies of dilute solutions.

Equilibrium is established when the chemical potential of the solvent is the same in both liquid
and vapor phases. We can use this condition to derive an expression for liquid/vapor equilibrium.
For simplicity, let’s denote the number of sugar molecules as nsug and the number of water molecules
in solution as nliq; similarly, we’ll let nvap be the number of water molecules in the gas phase.

µ∗liq +RT lnxliq = µo
vap +RT ln

P

P o
(217)

Now, suppose P ∗ is the vapor pressure of the pure solvent. Then

µ∗liq = µo
vap +RT ln

P ∗

P o
(218)

Combining the two equations gives

RT ln
P ∗

P o
+RT lnxliq = RT ln

P

P o
(219)

or

lnxliq = ln
P

P ∗
. (220)

Exponentiating both sides then gives

P = xliqP
∗. (221)

Thus the vapor pressure of the water is decreased in proportion to its mole fraction. Note that this
effect depends only on the total mole fraction 1 − xliq of the solute, not on its particular chemical
identity. The same result would be obtained if we had multiple different solute species; only the
total solute concentration matters. This is the defining feature of a colligative property.

18.2 Boiling Point Elevation

A similar effect is observed in monitoring the boiling point of our solution. At a fixed pressure P ,
the boiling temperature Tb is defined by the condition that the vapor pressure is equal to P . Since
the vapor pressure is suppressed by the presence of the solute, the boiling point will, in general, be
higher than for the pure solution. To describe this elevation quantitatively, we’ll need to consider
explicitly the dependence of the chemical potential for the pure solvent (liquid and vapor) as a
function of temperature.

Our condition for equilibrium is that

µ∗liq(Tb) +RTb lnxliq = µ∗vap(Tb). (222)

Since the solution is dilute, the boiling point Tb will not differ very much from the boiling temperature
T ∗b for the pure liquid. Thus, to first order in the difference we have

µ∗liq(Tb) ≈ µ∗liq(T ∗b ) +
dµ∗liq
dT

(Tb − T ∗b ) . (223)

Now, according to Eq. (212), µ∗liq is just the molar Gibbs free energy of the liquid; its differential
with temperature is therefore given by Eq. (216) as

dµliq

dT
= −sliq, (224)
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where sliq is the molar entropy of the liquid solvent. A similar result holds for the variation of µo
vap

with temperature, so that we obtain

µ∗liq(Tb) ≈ µ∗liq(T ∗b )− sliq (Tb − T ∗b ) (225)

µvap(Tb) ≈ µvap(T ∗b )− svap (Tb − T ∗b ) . (226)

Now, at the boiling point T ∗b of the pure solvent, our equilibrium condition gives us the relation

µ∗liq(T ∗b ) = µvap(T ∗b ). (227)

Introducing approximations [Eqs. (225) and (226)] into our equilibrium condition Eq. (222) and then
using Eq. (227), we obtain

µ∗liq(T ∗b )− sliq (Tb − T ∗b ) +RTb lnxliq = µ∗vap(T ∗b )− svap (Tb − T ∗b ) (228)

→ RTb lnxliq = [sliq − svap] (Tb − T ∗b ) (229)

or, after some rearrangement,

lnxliq = − ∆s

RTb
(Tb − T ∗b ) (230)

where

∆s = svap − sliq (231)

is the molar entropy of vaporization. Since the solution is dilute, the mole fraction of the solvent
xliq is very close to one; thus the Taylor series expansion

ln 1− x ≈ −x (232)

can be used to express the result as7

−∆s (Tb − T ∗b ) ≈ RTb ln (1− xsolute) ≈ −RT ∗b xsolute (233)

or

Tb = T ∗b + xsolute
RT ∗b
∆s

. (234)

Since the molar entropy of vaporization is related to the molar heat of vaporization by

Qvap =
∆s

T ∗b
, (235)

this is commonly expressed as

Tb = T ∗b +
R(T ∗b )2

Qvap
xsolute. (236)

Note here that – as with all colligative properties – the effect depends only on the total concentration
of dissolved species, regardless of their chemical identities. Thus if we wanted to calculate the boiling
point of a solution of NaCL (which dissociates in solution), the solute mole fraction xsolute must
refer to the total concentration of ions, i.e., twice the concentration of Na or Cl individually.

7Note that we’ve replaced Tb with T ∗
b on the right hand side; since the right hand side is already proportional to

a small quantity, the difference between Tb and T ∗
b is negligible.
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18.3 Freezing Point Depression

A similar effect occurs when we examine the freezing point of a dilute solution. We won’t go through
the derivation since it’s virtually identical to the calculation above for boiling point elevation. The
final result is the formula

Tf = T ∗f −
R
(
T ∗f

)2

Qfus
xsolute, (237)

where T ∗f is the freezing point of the pure solvent, and Qfus is the heat of fusion of the pure solvent.
Note that Qvap and Qfus are both positive for most solvents; thus the last term in this expression
has an overall negative sign, so that the freezing point is lowered in the presence of a solute.

18.4 Osmotic Pressure

Finally, let’s consider the problem of osmotic pressure across a semipermeable membrane. Suppose
we have a solvent contained in two chambers; one contains pure solvent and the other a dilute so-
lution of some solute molecule dissolved in the same solvent. The two chambers are separated by a
semipermeable membrane that allows passage of solvent molecules but not the solute. Experimen-
tally it is observed that the presence of the solute induces a pressure difference between the two
chambers at equilibrium. This difference is the osmotic pressure.

Osmotic pressure is the difference in pressure across a semipermeable membrane induced by
the presence of one or more solutes restricted to one side of the membrane.

At equilibrium, the chemical potential of the pure solvent µ∗(T, P ) must be equal to that of the
higher-pressure solvent that contains the solute µ∗(T, P + δP ) +RT lnxsolv. Here δP is the osmotic
pressure. Our condition for equilibrium is thus

0 = µ∗(T, P + δP ) +RT lnxsolv − µ∗(T, P ). (238)

Expanding the dependence of µ∗ on P in a Taylor series, this condition becomes(
∂µ∗

∂P

)
T

δP = −RT lnxsolv. (239)

But from Eq. (215), this partial derivative is just the molar volume vsolv of the pure solvent! Ex-
panding the ln term via Eq. (232), we obtain

vsolδP = RTxsolute (240)

or simply

V δP = nsoluteRT. (241)

Thus, perhaps surprisingly, the osmotic pressure due to the solute follows simply the ideal gas law!
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19 The Gibbs Free Energy as Available Work

Before we leave our discussion of the Gibbs free energy, it’s worth recognizing that it can be under-
stood in yet one other conceptual framework: as the available non-PV work stored in a system.

Suppose we have a system whose thermodynamic energy U is a function of N independent
coordinates x1, ..., xN , in addition to S and V . The coordinates x1, ..., xN could be the quantities
ni of various chemical species, but they could also be any other macroscopic work coordinate. For
example, if the system under consideration is a muscle cell, one of the coordinates xi might be the
length of the cell, the variable associated with the performance of physical work by the corresponding
muscle. The differential relation for energy is then

dU = TdS − PdV +
∑
i

(
∂U

∂xi

)
S,V,j 6=i

dxi. (242)

Now, for any reversible change in the state of the system, the differential amount of non-PV work
dWnpv is simply the last N terms in this expression, i.e.,

dWnpv =
∑
i

(
∂U

∂xi

)
S,V,j 6=i

dxi. (243)

A similar relation holds for the Gibbs free energy. The total differential is

dG = V dP − SdT +
∑
i

(
∂G

∂xi

)
P,T,j 6=i

dxi. (244)

Now, since the xi are independent variables from P and T , the derivatives
(
∂g
∂xi

)
P,T,j 6=i

in this ex-

pression must represent exactly the same quantities as the derivatives
(
∂U
∂xi

)
P,T,j 6=i

in the differential

for energy. Thus the total differential of non-PV work for a reversible process at constant pressure
and temperature is similarly just

dWnpv =
∑
i

(
∂G

∂xi

)
T,P,j 6=i

dxi. (245)

Integrating this equation across some macroscopic displacement of the coordinates x1, ..., xN , we
obtain the following observation:

The Gibbs free energy change associated with any process at constant temperature and pressure
is equal to the total amount of non-PV work that could be obtained if the process were
carried out reversibly.

In particular, if the coordinates xi are mole numbers, the Gibbs free energy change associated with
a process quantifies the total amount of chemical work that could be achieved if the process were
carried out reversibly. Thus, for example, the ∆G for the oxidation of glucose to carbon dioxide and
water defines the total amount of chemical work (e.g., formation of ATP from ADP or reduction of
NADP+ to NADPH) that can be generated by its metabolism.

As we’ve stated many times, of course, all process in the real world are irreversible to some
extent. This means that the actual non-PV work generated from a constant P/constant T process is
never actually equal to the Gibbs free energy change. Rather ∆G sets an upper bound on the total
work that could be performed.
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20 Statistical Mechanics: Entropy and Information

20.1 Motivation and Background

The last section closes our formal introduction of thermodynamics in this course. This lecture opens
our foray into statistical mechanics:

Statistical mechanics is the field of physical chemistry that uses explicit averages over mi-
croscopic physical models to derive thermodynamic relations.

You might wonder why we’re bothering with statistical mechanics, given that its ultimate goal is to
derive the thermodynamic relations that (to a considerable extent) we’ve already covered! In this
course, there are two primary motivations, one academic and the other practical:

• Statistical mechanics allows for a deeper fundamental understanding of how the world works
by explaining why macroscopic systems behave the way they do. At a more practical level:

• Statistical mechanics allows us to devise and test physical models for how a system works at
the microscopic level based on only macroscopic measurements of physical quantities.

The latter possibility – the ability to devise and test microscopic models against macroscopic mea-
surements – is what has made statistical mechanics an essential tool in molecular biophysics, in-
cluding problems ranging from enzyme function (How many substrates does an enzyme bind? How
many enzymes function in a given pathway?) to protein structure (Which structural states are most
stable? What is the likelihood of finding one of the less stable structures?).

In fact, it was statistical mechanics that originally convinced the scientific world of the most
basic of chemistry models: the existence of atoms. Prior to the statistical arguments formulated
by scientists such as James Clerk Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs, much of
the scientific world was convinced that thinking about “atoms” was something of a foolish game. It
was only when statistical mechanics was proven capable of predicting macroscopic physical laws with
quantitative accuracy – but only if one assumed the existence of atoms! – that the scientific world
started really to take the idea seriously.

20.2 Technical Approach

In its early days, statistical mechanics was an exceptionally difficult subject, particularly since
its pioneers were really trying to solve two problems at once: to develop the statistical tools to
describe the world at the microscopic level and to come up with microscopic models that (when
subjected to statistical analysis) gave rise to the right macroscopic physics. Our study will be
made substantially easier by more than a century of work on the subject, offering both a wealth
of accurately parameterized microscopic models and a variety of different statistical approaches to
“get through the math”.

The approach that we’ll adopt toward statistical mechanics is often termed the information theory
or maximum entropy formulation. In this method, information about the microscopic properties of
a system are “guessed” based on its observed macroscopic properties and the assumption that –
in a very precisely defined, technical sense – we can assume no information about the microscopic
state of the system other than the constraints offered by its macroscopic properties. Specifically,
the information theory approach uses these assumptions to assign probabilities to every possible
microstate the system can inhabit:

A microstate µ is a specific configuration of a physical system in which the positions and
momenta of all particles are precisely defined.
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Conversely, a macrostate M is the thermodynamic state characterized by a given set of macro-
scopic properties (e.g., temperature, pressure, volume, etc.).

Using these microstate probabilities pµ, macroscopic properties can be calculated as average values.
Note that, unless explicitly noted, the symbol µ will throughout the rest of this course be used to
enumerate system microstates not chemical potentials.

Suppose, for example, that we know a gas cylinder contains exactly N ideal gas particles and that
the macroscopic energy of the gas is exactly 1 J; these macroscopic properties define the macrostate.
Statistical mechanics then asks: Given these constraints, what are the principles governing the
microscopic distribution of gas molecules throughout the box? In particular, what is the probability
for any given system microstate, i.e., a particular configuration of gas particles in the box? The
information theoretic approach answers immediately: All microstates involving N gas particles and
an energy of exactly 1 J should have equal probability, since we have no information that could be
used to assign one state as more likely than any others. Any microstate with an energy other than 1
J should have zero probability since it contradicts our macroscopic constraints. And this argument
turns out to work quite well: If these assigned probabilities are used to calculate macroscopic
quantities like temperature and pressure, this statistical model leads directly to the ideal gas law.

20.3 Information Theory

In many cases, however, it isn’t nearly as obvious how to “assume no information” other than that
afforded by the macroscopic constraints. To see how to do this rigorously, we need some background
in information theory :

Information Theory is the field of mathematics that deals with the quantification and analysis
of information or, its opposite, uncertainty.

The aspect of information theory with which we’ll be concerned deals with the amount of uncertainty
embedded in a set of discrete probabilities:

A discrete probability pµ is a numerical assignment of how likely a given situation or event µ
is to occur. Discrete probabilities must always be greater than zero (the outcome is impossible)
and less than one (the outcome is guaranteed). For example, in a coin flip, there are two pos-
sible outcomes; if the coin is “fair” (i.e., equally balanced on each side), a reasonable discrete
probability for the outcome “heads” would be pheads = 1

2 .

A discrete probability distribution is a complete set {pµ} of discrete probabilities, i.e., an
assignment of how likely each of a range of possible situations or events is to occur. If there
are N possible situations or events, then

N∑
µ=1

pµ = 1. (246)

For example, in a coin flip, a reasonable set of possibilities would be pheads = ptails = 1
2 so that

pheads + ptails = 1.

In statistical mechanics, we’re concerned about assigning probabilities pi to each of the possible
microstates that a system might inhabit under the constraints imposed by a given set of macroscopic
constraints.

The foundational development in information theory was the introduction8 by Claude Shannon
of a rigorous mathematical metric for quantifying the amount of uncertainty embedded in a set

8See [C. E. Shannon, “A mathematical theory of communication,” in The Bell System Technical Journal, vol. 27,
no. 3, pp. 379-423, July 1948] online at https://ieeexplore.ieee.org/document/6773024.
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of discrete probabilities. Intuitively, it should be reasonable that certain probability distributions
provide more information than others. For example, the bar charts below compare two different sets
of probabilities for a six-sided die (singular of “dice”, as used in board games and gambling).

The left chart shows the probabilities for a fair die; in this case the probabilities of all six possible
outcomes of a roll have the same weight. This probability distribution gives us very little information
about the possible result of a roll of the die; its uncertainty is thus high. All we know is that the
die will show one of the six possible values. On any given roll, we’re equally likely to obtain a 6 as
a 1, a 2, or any other possible value.

The chart on the right shows the probability distribution for a loaded die. Here (presumably
because of a weight added to one side) we’re very much more likely to obtain a 1 than any other
number. This probability distribution contains quite a bit of information about the outcome of a
roll: we’re almost certain to roll a 1. The uncertainty of the distribution is thus very low. If this die
were to be used in a game, we’d certainly want to know this information before we play!

Shannon’s seminal contribution – and the starting point for modern information theory – was
to introduce a quantitative way to measure the amount of uncertainty associated with a probability
distribution. It’s not immediately obvious that a well-defined measure of the “amount of uncertainty”
even exists. But Shannon reasoned that if it exists the uncertainty measure s({pi}) should satisfy
three postulates:

Shannon’s Uncertainty Postulates:
• The uncertainty s({pµ}) should be a continuous function of each probability pµ. This

just means that there should be no “sudden jumps”: a small change in the probabilities
should give rise to a correspondingly small change in uncertainty.

• When each of N possible outcomes are equally likely, the uncertainty s({pµ}) must in-
crease monotonically with increasing N . Intuitively, this just says that the more possible
outcomes there are, the less we know about what’s going to happen!

• If a choice between two outcomes can be broken down into successive choices, the total
uncertainty should be just the total uncertainty of making the choice plus the weighted
sum of the individual uncertainties within each choice.

The last of these assumptions may be a little confusing, so let’s work through an explicit example.
Suppose that, instead of getting information about the probabilities of each die roll individually we
were given two separate pieces of information:
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1. The relative probabilities peven and podd for rolling even and odd numbers, and also

2. The relative probabilities for rolling a 2, 4, or 6 given that the outcome is even, along with the
relative probabilities for rolling a 1, 3, or 5 given that the outcome is odd.

Shannon’s assumption is that we can break down the total uncertainty of the distribution into
separate contributions from these two statements:

s({p1, p2, p3, p4, p5, p6}) = s({peven, podd}) + peven · s({p2|even, p4|even, p6|even}) (247)

+ podd · s({p1|odd, p3|odd, p5|odd}), (248)

where pi|even is the probability for roll i given that the outcome is even, and pi|odd is the probability
for roll i given that the outcome is odd.

A concrete example is illustrated in the figure below. Here probability of rolling an even number
is peven = 2

3 , while the probability of rolling an odd number is only podd = 1
3 . Further within

the possible odd outcomes, all values (1, 3, or 5) are equally likely, while within the possible even
outcomes, we’re twice as likely to roll a 6 as to roll either a 2 or 4.

In this case, Shannon’s assumption implies that

s

({
1

9
,

1

6
,

1

9
,

1

6
,

1

9
,

1

3

})
= s

({
1

3
,

2

3

})
+

2

3
· s
({

1

4
,

1

4
,

1

2

})
+

1

3
· s
({

1

3
,

1

3
,

1

3

})
. (249)

20.4 Shannon’s Information Entropy

Shannon’s critical insight was that (up to an overall scaling factor) there is only one mathematical
function that can satisfy all three of these postulates. That function is

The Shannon Information Entropy: Shannon’s information entropy is a measure of the
uncertainty associated with a given probability distribution {pµ} and is defined as:

s({pµ}) = −
∑
µ

pµ ln pµ. (250)

To understand what this new quantity represents, let’s look at two limiting cases. Given a set of N
possible outcomes to an event:

• If one outcome is certain to happen and all others are impossible, then the information entropy
is exactly zero.
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• If all outcomes are equally likely, i.e., pµ = 1
N for each µ, then

s({pµ}) = −
N∑
µ=1

1

N
ln

1

N
(251)

= −N · 1

N
ln

1

N
(252)

= lnN. (253)

The first case tells us correctly that if the outcome is certain, there is no uncertainty! The second
says that, with equally probable outcomes, the information entropy is just the natural log of the
number of possibilities.

This last formula should look rather familiar. In fact, apart from multiplication by the prefactor
kB , this is exactly Boltzmann’s formula [Eq. (91)] for the thermodynamic entropy! This connection
seems at first rather surprising since Boltzmann’s formula was developed through a heroic effort to
directly calculate the thermodynamic properties of physical systems, while Shannon’s formula was
obtained through an entirely abstract process of reasoning about probability distributions. In the
next section, we’ll begin to explore the connection between these two results.
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21 Information Theory and Statistical Mechanics

21.1 The Maximum Entropy Approach

In the last section, we introduced the concept of information entropy s({pµ}) of a probability
distribution and stated that we would use this information-theoretic tool to “infer” the correct
statistical description of thermodynamic systems. To do this, we’ll follow the maximum entropy
method introduced by E. T. Jaynes:

The Maximum Entropy Method: To assign microstate probabilities to a thermodynamic
system, proceed as follows:

1. Identify the external constraints on the system. For example, is the system constrained
to have a fixed volume? What about pressure or temperature? Is the total energy fixed
(as for a totally isolated system)?

2. Identify what possible microstates are consistent with the macroscopic constraints just
defined. For example, for an isolated system at fixed energy U , we know that only those
microstates µ that have energy U are allowed.

3. Identify the set of probabilities pµ that, when assigned to the microstates µ, maximizes
the information entropy of the distribution, subject to the macroscopic constraints.

The resulting probabilities pµ can then be used to calculate any unknown thermodynamic
properties by averaging over the probability-weighted microstates.

Before we go into the technical details of how this works, let’s back up and talk about the big picture.
What are we trying to accomplish here, and why does our approach make sense?

21.2 Why are we doing this?

Ultimately, what we’re trying to accomplish is to find a way to calculate macroscopic physical prop-
erties from microscopic models. This approach is immensely useful in both physical and biological
applications since it allows us to test mechanistic molecular models using only macroscopic measure-
ments. For example, suppose we want to know how many binding sites a particular enzyme has.
It would be extremely inconvenient if the only way to answer this question were to crystallize the
protein and analyze its structure at the microscopic level. A much easier approach would be to build
a statistical model for how the thermodynamic and kinetic properties of the enzyme would differ
between a system with only one binding site versus a system with two or more sites. Then we could
simply perform the appropriate macroscopic binding measurements in solution and check which
model (single-site or multi-site) more accurately matched the data. No crystal structure necessary!

Alternatively, if we’re in the business of trying to design new molecualr systems (e.g., photovoltaic
cells, bioactive polymers, biomimetic scaffolds, or enzyme-inhibiting drugs), statistical mechanics
gives us a way to predict which designs will most efficiently achieve our objectives. Although (given
the complexity of biological macromolecules) theoretical models usually can’t predict macroscopic
properties exactly, they do offer a great deal of qualitative insight into what designs are likely to
work. For example, statistical principles are routinely used to predict Gibbs free energy change of
ligand binding in computational drug-discovery studies. Although such calculations carry substantial
uncertainty, they can rapidly screen much larger numbers of possible drug molecule designs than
could be tested experimentally, selecting only the most likely candidates for experimental testing.
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21.3 Why does maximum entropy make sense?

These examples hopefully make clear why it’s useful to be able to build (for a given microscopic
model) a statistical description that lets us calculate macroscopic properties from microscopic prob-
abilities pµ. What may be less clear at this point is why it makes sense to pick the particular
probability distribution that maximizes the information entropy s({pµ}).

Although there are many different arguments that can be used to justify this choice, the simplest
one is simply that it works. In a few lines of equations, the maximum entropy approach can be used
to obtain mathematical results that would take a rigorous first-principles approach many volumes of
work to derive explicitly. And, when applied correctly, the method agrees with other “first principles”
approaches in all known cases.

More fundamentally, the reason this works goes back to our observation in the first weeks of the
course that the thermodynamic state of most systems can be described accurately in terms of only
a very small number of macroscopic coordinates. In fact, almost the first step in our treatment of
thermodynamics was to distinguish between work and heat. Work, you may recall, is any change to
the system energy resulting from displacement of one of only a handful of macroscopic coordinates
– volume, electrical charge, chemical concentration, etc. Heat consists of any change to the system
energy that is not describable as macroscopic work. Thus, the vast majority of the∼ 1023 microscopic
coordinates of a macrosocpic system are lumped together into a single coordinate (the entropy) which
is related to the flow of heat, while only a few select coordinates are observable as macroscopic work.

Jaynes’ key insight was to realize that a very similar distinction can be applied to assign micro-
scopic probabilities: Since only a few macroscopic coordinates suffice to determine thermodynamic
state, we’ll always obtain correct results if we assume no information about those coordinates that
do not define the macroscopic state. If the true microstate probabilities did contain information
about some other macroscopic coordinate (information contrary to that already implied by the ex-
isting constraints), then this would necessarily constitute a new macroscopic constraint and should
be incorporated into our definition of the thermodynamic state. Thus we’ll never run into contra-
dictions as long as we assume as little information as possible about the microscopic state of the
system.

Suppose, for example, that we wanted to build a probability distribution for a system that
consists of a mixture of Ar and Xe gas in a sealed box. We could construct a set of microstate
probabilities in which all the Xe was always on the left side of the box and all the Ar was always on
the right side (see figure below). But this set of probabilities implies a macroscopic separation of our
gases that isn’t really present in our system; in fact, thermodynamically, this would be a completely
different system. A much more reasonable model is one in which the two gases are evenly distributed
across both sides of the box, i.e., one that assumes no information about the relative locations of Ar
and Xe.

In short, the maximum entropy approach is based on the fact that, if probabilities are assigned in

81



a way that both respects the macroscopic constraints and carries no information about unconstrained
coordinates, our predictions will always be correct. This doesn’t necessarily mean that the system
actually inhabits all of the states in our model; in fact, it would take a fantastically long time
even for relatively simple systems to sample all of the microstates consistent with their respective
thermodynamic states. It does mean, however, that any deviations between which microstates are
actually inhabited by the system and which microstates our model predicts will be inhabited will not
lead to errors in calculating macroscopic quantities. And, ultimately, this is what thermodynamics is
all about: describing systems in coarse-grained terms that allow us to make macroscopic predictions
without worrying about microscopic details.

21.4 Thermodynamic Ensembles

The maximum entropy approach can be applied to systems under any set of thermodynamic con-
straints – whether based on volume, energy, pressure, or anything else. The statistical model de-
scribing any such system is referred to as a thermodynamic ensemble:

A thermodynamic ensemble is a hypothetical collection of physical microstates µ, along
with assigned probabilities pµ, used to model a real macroscopic system subject to a fixed set
of thermodynamic constraints. If the ensemble is constructed correctly, then all macroscopic
properties X for the real system can be calculated as ensemble averages

X = 〈x〉 =
∑
µ

pµx(µ) (254)

of the corresponding microscopic functions x(µ).

We performed a very simple ensemble average at the very beginning of this course, when we calcu-
lated the average energy of a monatomic ideal gas in terms of the macroscopic pressure and volume.
In that case, we didn’t have the specific probabilities over each microstate; we simply showed that
the average energy could be related to the quantity PV .

In the coming lectures, we’ll use the maximum entropy approach to construct specific microstate
probabilities for each possible microstate in an ideal gas, along with several other systems. Each of
these calculations will be performed in one of two thermodynamic ensembles:

The Microcanonical Ensemble is the thermodynamic ensemble corresponding to a system
held at constant number of particles N , volume V , and energy E. It is sometimes referred to
as the NVE ensemble.

The Canonical Ensemble is the thermodynamic ensemble corresponding to a system held at
constant number of particles N , volume V , and temperature T . It is sometimes referred to as
the NVT ensemble.

There exist many other thermodynamic ensembles (e.g., the “Gibbs Ensemble” corresponding to a
system held at constant pressure or the “Grand Canonical Ensemble” describing open systems), but
these two will be sufficient to derive the results necessary for our study. In general, extending the
theory to other ensembles is straightforward and follows a similar pattern as used in our study of
the microcanonical and canonical systems.
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22 The Microcanonical Ensemble

22.1 Introduction and Definition

The microcanonical ensemble is conceptually the simplest of all thermodynamic ensembles, though
that doesn’t always make it either the most realistic or the easiest to work with. Our task in
microcanonical systems is to assign probabilities to all possible microstates µ based on the constraints
that the number of particles, the total volume, and the total energy of each microstate must remain
fixed at some predefined set of values, N , V , and E.

It’s pretty clear what states are possible in such a system: any microstate µ is possible as long
as it contains the right number of particles in the correct volume and its total energy εµ is exactly
equal to E. What about the microstate probabilities?

Intuitively, the answer may be clear already: If we’re to assume no extra information than the
state constraints, then there can be no reason to choose one microstate as more probable than
another. But it’s instructive to see that exactly the same result is determined by our information-
theoretic approach. The maximum entropy method says that the correct set of probabilities is the
one that maximizes the information entropy of Eq. (250) subject to the relevant constraints. In the
microcanonical system, we can apply the necessary thermodynamic constraints just by restricting
the sum over microstates µ to extend only over those states with the correct values of N , V , and
E. But there is one other constraint that must be applied during the optimization so as to make
sure the probabilities are statistically meaningful: the sum of all probabilities must equal 1. To
implement this constraint, we’ll need to grab another tool from our calculus mathematical toolbox:
the method of Lagrange Multipliers.

22.2 Lagrange Multipliers

You probably learned about Lagrange multipliers in your primary calculus sequence, but it’s okay
if you don’t remember them. The intuition behind them is a bit abstract, and they’re often covered
only very briefly. Unfortunately, we don’t have time to give a thorough treatment here either, but
we’ll at least describe the basic mathematical method and give a qualitative explanation for why it
works.

The method of Lagrange Multipliers is a method for maximizing or minimizing a given
function subject to constraints. The mathematical basis of the method is the observation that:
the extremal points (maxima or minima) of a function f(x), subject to a series of constraints
c1(x) = 0, c2(x) = 0, ..., cK(x) = 0, are exactly the extremal points (maxima or minima) of
the function

g(x) = f(x) + λ1c1(x) + ...+ λKcK(x) (255)

where the quantities λ1, ..., λK are constant factors termed Lagrange multipliers whose values
must be determined by requiring that the extremal points satisfy the original constraints c1(x) =
0, ..., cK(x) = 0.

This theorem is something of a mouthful, so let’s break it down more carefully. First, let’s start
with the notation. The bold script notation x here means that the functions f(x) and ci(x) depend
on several variables x1, x2, ... that we haven’t bothered to specify explicitly. The bold script symbol
x is just a short-hand notation for all of these coordinate collectively.

Second, what exactly does it mean to refer to an equation like “c1(x) = 0” as a constraint? The
idea here is that, most generally, a constraint is just some mathematical relationship between the
coordinates x1, x2, etc. For example, we could require that

x1 = x2
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or that
x1 + x2 = 1

or that ∑
i

xi = 0.

The point is that we can always write such a relationship in the form c(x) = 0. In the three examples
above, the last one is already in this form, while the others can be brought into it as

x1 − x2 = 0

or
x1 + x2 − 1 = 0,

respectively. Thus we can regard the constraint as an equation c(x) = 0, as long as we choose c(x)
appropriately.

Finally, the theorem above asserts that the extremal points of any function f(x) subject to a
given set of such constraints are the same as the extremal points of the function g(x) defined in the
theorem. Thus by finding the extrema of g(x), we can also find the extrema of f(x). This result is
not at all obvious, and we don’t have the space here to explain it in detail. Qualitatively, though, the
idea behind this is that in constrained optimization problems, the condition for extremization is that,
at the extremal points, the differential of f(x) must be zero for any small displacement consistent
with the specified constraints. This contrasts with the situation in unconstrained optimization, where
df must be zero for any small coordinate displacement. The extra terms λ1c1(x) + λ2c2(x) + ...
ensure that the displacements considered in the optimization are constructed so as to preserve the
constraints.

The catch, of course, is that the factors λi (the “Lagrange multipliers”) used to define g(x) are
not known in advance. They must be determined in each case by the original set of constraints
imposed on the problem. For example, suppose x contains N coordinates x1, ..., xN , and there are
K constraints c1(x), ..., cK(x) on the system. Extremization of g(x) then implies that(

∂g

∂xi

)
xj 6=i

= 0, (256)

for each of the N coordinates xi. Each such equation contains (some of) the K variables λ1, ..., λK
– a system of N variables in K unknowns. So long as K ≤ N , this system determines a unique
solution to the problem. If K > N , there are more constraints than coordinates, and (unless some
of the constraints are equivalent) the problem has no solution – the original optimization question
is ill-posed.

22.3 Application to the Microcanonical Ensemble

The method will likely become clearer when we apply it to our microcanonical optimization problem.
Here we want to maximize the Shannon information entropy [Eq. (250)] subject to the constraint
that the probabilities pµ sum to unity, i.e., ∑

µ

pµ = 1. (257)

Writing this in the form c(p) = 0, we define the extremization function

g(p) = −
∑
µ

pµ ln pµ + λ

(
1−

∑
µ

pµ

)
. (258)
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According to the Lagrange multipliers method outlined above, the maximum entropy distribution
can be identified by maximizing g(p). For each microstate ν, this gives an equation

0 =

(
∂g

pν

)
pµ6=ν

=
∂s

pν
+ λ

∂

∂pν

(
1−

∑
µ

pµ

)
(259)

= − ln pν − 1− λ. (260)

Rearranging the expression, we obtain

pν = e−(λ+1). (261)

Since the right-hand-side is independent of ν, this means that all microstates in the microcanonical
ensemble are equally likely. The normalization factor λ must be determined by the original constraint
that

∑
µ pµ = 1 or

1 =
∑
µ

pµ =
∑
µ

e−(λ+1) = Nstatese
−(λ+1), (262)

where Nstates is the total number of microstates consistent with the thermodynamic constraints
(constant energy, volume, and number of particles). The multiplier λ must thus satisfy the equation

e−(λ+1) =
1

Nstates
, (263)

so that we find

pµ =
1

Nstates
. (264)

This result simply expresses formally what we already expect intuitively: if we have no information
upon which to distinguish between two different states µ and ν, then they should be assigned the
same probability, i.e., pµ = pν .

22.4 Entropy and Entropy

From this result, we can readily calculate the information entropy of the system:

s({pµ}) = −
Nstates∑
µ=1

pµ ln pµ (265)

= −
Nstates∑
µ=1

1

Nstates
ln

1

Nstates
(266)

= lnNstates. (267)

Referring back to Eq. (91), we see that this is almost exactly the Boltzmann entropy formula we
introduced near the start of the course. The only differences are that

1. Boltzmann’s formula is for the thermodynamic entropy, while our result is for the information
entropy, and

2. Boltzmann’s formula includes a prefactor of kB = R
NA

, where R is the ideal gas constant and
NA is Avogadro’s number.

These observations suggest the postulate that the information entropy is, in fact, directly propor-
tional to the thermodynamic entropy:
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Entropy Postulate: The thermodynamic entropy S for a macroscopic system can be calcu-
lated from the appropriate thermodynamic ensemble as the average

S = kBs({pµ}) = −kB

∑
µ

pµ ln pµ. (268)

In fact, Boltzmann’s entropy formula is simply his own statement of this postulate, applied to the
microcanonical ensemble.

This postulate is supported by the fact that both the information entropy and the thermodynamic
entropy are maximized at equilibrium. It should be emphasized, however, that ultimately this
statement is a postulate because it cannot (in general) be derived from a more fundamental theory.
In principle, the entropy of a real system could be calculated directly from a theoretical model using
Eq. (105) or (106), but in practice such calculations are far too difficult to be completed. Instead,
we hypothesize that the thermodynamic and information entropies are directly proportional to each
other and then test this hypothesis by comparing the resulting statistical predictions against known
thermodynamic relationships. As it turns out, the hypothesis satisfies all known thermodynamic
relationships, so we regard it as correct to our best understanding.
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23 The Canonical Ensemble

23.1 Definition

A similar approach can be applied to maximize the entropy for systems in the canonical ensemble,
i.e., with N , V , and T held constant. The first two of these requirements are the same as in the
microcanonical ensemble, and can be directly accounted for in our calculations by considering only
those microstates with the correct volume and number of particles.

The last requirement (constant T ) is a little trickier. In our development of thermodynamics,
we defined the temperature in terms of the properties of ideal gases. Things are a bit more complex
from a statistical perspective since we must calculate the properties of the ideal gas statistically
before we can use its properties to define a temperature scale!

The practical resolution to this difficulty is to use a different condition to characterize the canon-
ical ensemble: that the average energy be fixed at some specified value U . This is a constraint that
we can easily incorporate into our maximum entropy formalism. And, once we’ve completed our
calculations, we can show that the average-energy requirement is equivalent to fixing the tempera-
ture on the ideal-gas scale. Although this approach is a little round-about, it does turn out to be
logically consistent, and it makes the math much easier than if we tried to use fixed temperature as
our starting point for entropy maximization.

23.2 Maximizing the Entropy

With this introduction, our problem reduces to maximizing the information entropy s({pµ}) for a
system of microstates at fixed V and N subject to the constraints

•
∑
µ pµ = 1

•
∑
µ pµεµ = U .

The first constraint says that the sum of the probabilities must be one (a requirement for the
set {pµ} to be a well-defined probability distribution), while the second is exactly the condition
that the average energy must equal the thermodynamic energy U . Here εµ is the total energy of
the microstate µ, i.e., the value of the total system Hamiltonian evaluated at the coordinates and
momenta specified for all particles by the microstate µ.

According to the method of Lagrange Multipliers, this means we must maximize the function

g({pµ}) = −
∑
µ

pµ ln pµ + λ

(
1−

∑
µ

pµ

)
+ β

(
U −

∑
µ

pµεµ

)
. (269)

Here λ is the Lagrange multiplier associated with the normalization condition
∑
µ pµ = 1, and β is

the independent Lagrange multiplier associated with the constraint
∑
µ pµεµ = U . Calculating the

partial derivative with respect to the probability pν of an arbitrary microstate ν, we obtain

∂g

∂pν
= − ln pν − 1− λ− βεν = 0 (270)

or after rearranging terms and exponentiating both sides

pν = e−(λ+1)e−βεν . (271)

The first of these factors has exactly the same form as we saw previously in the microcanonical
optimization; it represents an overall normalization constant that ensures that the probabilities sum
to unity. The second term is different: this term varies by state and indicates that the probability of
a microstate in the canonical ensemble is an exponential function of its energy.
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23.3 Canonical Normalization Constraint: The Partition Function

The exact values of the constants λ and β must be determined by making sure that they satisfy the
normalization and average-energy constraints listed above. The normalization constraint is satisfied
if

pµ =
e−βεµ

Z
, (272)

where

Z ≡
∑
µ

e−βεµ (273)

is termed the partition function. We’ll comment more carefully on what this function represents
physically once we’ve established the value of β. For now, notice just that it is a normalization
constant required to ensure that the probabilities pµ sum to unity.

Since the probability of each microstate is exponentially weighted, some states are more likely
to be occupied than others; in particular, if β > 0 (which we will see shortly is true), then low-
energy states (where εµ is small) will be much more likely to be occupied than high-energy states.
Intuitively, you might suspect that the parameter β should be related to the temperature of the
system. Then our probability formula would say that many states are accessible to the system at
high temperatures but only a few are accessible at low temperatures. But to develop this idea fully,
we’ll have to identify exactly what β represents thermodynamically.

To do that, it’s useful to note first that many key thermodynamic quantities can be calculated
as partition function derivatives. For example, the average energy can be calculated as

∑
µ

pµεµ =

∑
µ εµe

−βεµ

Z
(274)

= −

∑
µ

(
∂
∂β e
−βεµ

)
Z

= −
∂Z
∂β

Z
(275)

= −∂ lnZ

∂β
. (276)

Since the average energy is constrained to match the thermodynamic U , this implies that

U = −∂ lnZ

∂β
. (277)

We’ll use this relation in the next section when we impose the constraint of constant energy.

23.4 The Inverse Temperature

Our last fundamental task in developing the canonical ensemble is to answer the question: How
is β related to real thermodynamic parameters? Intuitively, we already surmised that β might be
related to the thermodynamic temperature T . To flesh this idea out fully, let’s see if we can derive
an explicit expression for T in terms of statistically calculable quantities.

Recall from our first-law differential relation that, when volume and number of particles remain
fixed, the entropy, energy, and temperature are connected by the relation

dU = TdS Constant V , N. (278)

This means that, in statistical applications, we can identify the thermodynamic temperature simply
by checking how U varies with small variations in S.
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Since we’re in the canonical ensemble, as long as we keep N and V fixed, the set of microstates
µ that together produce the ensemble remain fixed. Only their relative probabilities pµ are free to
vary. This means that any differential displacements in the energy dU or entropy dS must result
solely from differential changes to the probabilities dpµ. With N and V fixed, the only parameter
left to vary in the probabilities pµ is the Lagrange multiplier β. So all displacements in dU and dS
(in the Canonical ensemble) must result from displacements dβ.

Now, note that the entropy S can be related to the energy U by

S = −kB

∑
µ

pµ ln pµ = −kB

∑
µ

pµ ln

(
e−βεµ

Z

)
(279)

= kB

∑
µ

pµ (βεµ + lnZ) (280)

= kBβU + kB lnZ. (281)

This means that

dS = −kB

(
Udβ + βdU +

dZ

Z

)
(282)

= −kB (Udβ + βdU + d lnZ) (283)

= −kB

(
Udβ + βdU +

∂ lnZ

∂β
dβ

)
(284)

= −kB (Udβ + βdU − Udβ) (285)

= kBβdU (286)

or, after rearranging terms,

dU =
1

kBβ
dS. (287)

Comparing Eqs. [(278)] and [(287)], we see that, for our statistical model to be consistent with
thermodynamics we must have

The Inverse Temperature

β ≡ 1

kBT
(288)

for any system in the canonical ensemble.

With this result, we can rewrite our probability and partition function formulas as

pµ =
e
− εµ
kBT

Z
, (289)

where the partition function is

Z ≡
∑
µ

e
− εµ
kBT . (290)

In this form we can see more clearly that the probability pµ for a microstate µ in the canonical
ensemble decreases exponentially with the ratio of its energy to the “thermal energy” kBT .
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As we’ve commented previously, the term “thermal energy” can be applied to many different
quantities, so one should be a bit cautious in using it. In the present context, though, it seems
particularly appropriate: the quantity kBT determines which microstates are thermally populated
at temperature T . If εµ � kBT , then the population will involve the exponent of a very small

negative number, so that the e
− εµ
kBT term approaches unity. On the other hand, if εµ � kBT , then

the population will involve the exponent of a very large negative number so that e
− εµ
kBT approaches

zero. The quantity kBT can thus be thought of as the amount of energy available from the thermal
environment that can be used to populate the system microstates, i.e., the “thermal energy”.

23.5 The Partition Function as Number of Thermally Accessible States

In our formulas above, we introduced the partition function Z as simply a normalization constant
used to ensure that the sum of all microstate probabilities is exactly unity. A more interesting
interpretation is obtained if we note that exactly the same probabilities pµ are obtained if we multiply
the top and bottom of Eq. (289) by an overall constant. In particular, suppose in a particular system
that εmin is the lowest energy of all microstates µ, i.e.

εmin = min
µ
εµ. (291)

We can then recast Eqs. (289) and (290) as

pµ =
e−β(εµ−εmin)

Z ′
(292)

with

Z ′ =
∑
µ

e−β(εµ−εmin). (293)

Effectively, what we’ve done is to shift the system energy scale, defining a new “zero” for energy
but leaving the relative probabilities of each state unchanged. Since these equations are obtained
by simply multiplying through the equation for pµ by the constant e+βεmin , the actual value of the
probabilities is left unchanged.

The partition function Z ′, however, now takes on a new meaning: it still serves as a normalization
constant but it also counts the number of microstates that are thermally accessible to the system.
For example, suppose the system has a unique “ground state”, i.e., that there’s only one state that
has energy εµ = εmin. Without losing generality, let’s refer to this microstate as µ = 0. Then for
this particular microstate,

p0 =
e−β(εmin−εmin)

Z ′
=

1

Z ′
. (294)

In the low-temperature limit T → 0 (which is equivalent to β → ∞), Z ′ approaches 1 since the
probabilities for all states other than µ = 0 approach zero. More generally, if there are Ndeg “ground
states” with energy εµ = εmin, then the partition function Z ′ approaches Ndeg in the low-temperature
limit. Conversely, suppose the system possesses Nstates microstates in total. In the high-temperature
limit T → ∞, which is equivalent to β → 0, the exponent β (εµ − εmin) approaches zero for all
microstates, so that the partition function Z ′ approaches Nstates.

Thus in both the high- and low-temperature limits, the modified partition function Z ′ reduces to
just the number of microstates the system can occupy. At intermediate temperatures, Z ′ interpolates
between these two limits, transitioning smoothly from Ndeg to Nstate and “counting” the number of
thermally accessible states at each temperature.
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24 Lattice Polymers

24.1 The Protein Folding Problem

To see how these rather abstract formulas apply to real-life systems, we’ll explore next a simple
model for protein folding. Protein folding is an incredibly complex process that in many ways defies
simplistic explanations. Nevertheless, a few characteristic “driving forces” in protein folding can be
identified:

• The decrease in protein entropy associated with folding into a single, well-defined confor-
mation typically opposes folding. This observation offers a simple (in fact overly simplistic)
explanation for why proteins tend to unfold at high temperatures. However, it should be born
in mind that even a “folded” protein structure actually possesses some degree of conforma-
tional freedom since both the backbone and (especially) side chains are still able to flex and
rearrange themselves locally, even in the folded state. This residual freedom helps somewhat
to offset the entropy loss associated with folding.

Image by Vincent Voelz, online at https://commons.wikimedia.org/wiki/File:ACBP_MSM_
from_Folding@home.tiff. Related to publication Voelz et al. J. Am. Chem. Soc. 2012,
134, 12565-12577; http://dx.doi.org/10.1021/ja302528z

• Hydrogen-bonding interactions within the protein backbone and between polar sidechains
stabilize the folded structure. In many cases, this contributes to a negative enthalpy change as-
sociated with protein folding. However, protein-folding also decreases the number of hydrogen-
bonding interactions that the protein can form with the solvent (usually water), which to some
extent counteracts the stabilization from protein-protein interactions.
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• Protein folding usually increases the entropy of the solvent (usually water) since the
folded state of the protein is usually more compact than the unfolded state; this leaves water
molecules that would otherwise be occupied with protein-water interactions free to diffuse
through the entire solvent volume, increasing the solvent entropy.

As you may have noticed, the various “driving forces” for protein folding are very much in
competition with each other. Protein folding decreases the entropy of the protein but increases the
entropy of the solvent; it increases the number of energetically favorable protein-protein hydrogen
bonds but decreases the number of protein-water hydrogen bonds. And the effects we’ve described
are only the tip of the iceberg! Other key factors that are even harder to quantify include the
flexibility of the folded structure (which can substantially increase the entropy of the folded state)
and, most importantly, the specific interactions enabled by the unique sequence of amino acids
that compose the protein chain. Examples of sequence-specific features include salt bridges formed
between Arg and Lys residues and the steric “kinks” introduced into the backbone by the presence
of a Pro residue.

The complexity and interconnectedness of these effects leads to what is known as the protein-
folding problem:

The Protein-Folding Problem is a broad question in biophysical chemistry that asks how the
folded state of a protein can be predicted from its amino acid sequence and what mechanisms
guide proteins to fold to their native structure.

In the early days of biophysics, it was expected that relatively simple rules should be available
to predict folded protein structures from the amino acid sequence, similar to the way a few simple
hydrogen-bonding and base-stacking patterns account for the three-dimensional crystal structure of
double-stranded DNA. As time passed, however, and as more crystal structures became available, it
became gradually clearer that the protein-folding problem is much more complex than the parallel
problem for DNA.

24.2 Lattice Proteins

In recent years, the quality of our computational models and the quantity of available computing
power have together produced significant advances against this challenge. In what is becoming an
impressive variety of cases, now, native protein structures can be predicted from only the amino
acid sequence, and novel protein structures can even be designed from scratch. Nonetheless, the
governing principles behind the problem remain complex since there are a huge number of degrees
of freedom that must be simultaneously considered in analyzing the sequence of any given protein.
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For exactly this reason, protein folding is very much a statistical problem and is ripe for analysis in
terms of the canonical ensemble we’ve just described.

Since the full protein folding problem is much too complex for us to treat here, we’ll consider a
simplified problem know as the lattice protein model.

A Lattice Protein model is a simplified description of the protein-folding problem, where the
protein chain is modeled by a sequence of “beads” (representing amino acids) on a 2D or 3D
grid (the “lattice”).

The use of a discrete lattice in this model (rather than the full, continuous, three-dimensional space
available to real protein sequences) dramatically simplifies its analysis and in many cases allows us
to enumerate conformational microstates explicitly.

To keep things simple, we’ll think about protein conformations in only two-dimensions (2D),
and we’ll consider peptides made of only four amino acids with (dramatically!) simplified physical
properties. Given a peptide sequence, we’ll enumerate (computationally) all the possible confor-
mations µ of the peptide on our 2D lattice, assign each conformation an energy εµ based on the
amino-acid interactions in that structure, and then assign temperature-dependent probabilities in
the canonical ensemble. Real proteins are, of course, much more complicated than the 2D models
we’ll study here, but this simplified model will at least give us a small taste of the kind of energetic
and entropic forces the drive proteins to fold into stable, well-defined three-dimensional structures.

Specifically, we’ll think about peptide sequences composed of four idealized amino acids:

• Alanine (Ala / A) residues will be treated as purely hydrophobic: A favorable energy shift
−εo will be assigned for each Ala-Ala contact in our peptide structure.

• Lysine (Lys / K) is a positively charged amino acid. We assign an unfavorable energy offset
+εo for each Lys-Lys contact and a favorable offset −εo for every Lys-Glu contact (see next
item).

• Glutamate (Glu / E) is a negatively charged amino acid. We assign an unfavorable energy
offset +εo for each Glu-Glu contact and a favorable offset −εo for every Lys-Glu contact.

• Proline (Pro / P) is a sterically constrained amino acid due to the fact that its alkyl sidechain
is chemically bonded to the amine nitrogen, forming a five-membered ring. This leads to
somewhat complicated steric constraints on the roles Pro can serve in protein structures, but
we’ll simplify the situation in our 2D model to assign

– A favorable energy shift of −εo when the peptide chain makes a right-hand turn at a Pro
residue

– An unfavorable shift of +εo when the peptide chain makes a left-hand turn at a Pro
residue

– No offset when the chain is straight at a Pro residue.

Consider, for example, the nine possible combinations of the tetra-peptide EAPK sketched in
the diagram below. Here each dot in the diagram represents an amino acid, and the thin blue lines
indicate the amide bonds connecting them.
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The conformer in the top left corner has an assigned energy of

εµ = −2εo (295)

since it is stabilized by both a Glu-Lys contact (salt bridge) and the favorable right-hand turn of
the Pro residue. The next two conformers (top-center and top-right) are stabilized by favorable
Pro conformations but not by any electrostatic contacts and hence are assigned slightly higher
conformation energies of εµ = −εo. The three conformations in the middle row have energies of
εµ = 0 since there are no electrostatic or hydrophobic contacts, and the Pro residue is in the
neutral (neither favored nor disfavored) straight conformation. The bottom-left conformer is also
assigned εµ = 0 since the favorable electrostatic interaction is counter-acted by an unfavorable Pro
conformation. Finally, the bottom-center and bottom-right conformations are assigned the unstable
value εµ = +εo due to the disfavored left-turn Pro conformation and the lack of any stabilizing
electrostatics.

From these conformation energies, we can calculate conformation probabilities for our peptide
using the Canonical ensemble expressions of Eqs. (289) and (290). From the nine conformations in
the figure above, we can calculate the partition function as

Z ′ =

9∑
µ=1

e
− (εµ−εmin)

kBT (296)

= e0 + 2e−βεo + 4e−2βεo + 2e−3βεo . (297)

Now suppose for concreteness that

εo = 2 · kB · 300 K. (298)

This gives a partition function at 300 K of

Z(300 K) = 1 + 2e−2 + 4e−4 + 2e−6 ≈ 1.35. (299)
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Intuitively, this says that the system is mostly restricted to the lowest-energy conformation, with a
small population in the higher-energy conformations. The populations can be calculated quantita-
tively using Eq. (292); for example, the population of the lowest-energy conformer is simply

p0 =
1

Z ′
≈ 74%. (300)

The remaining populations at T = 300 K are reported in the lower-right corner of each figure.

24.3 LatticeProtein Simulation App

To get a more “hands-on” feel for these lattice polymer simulations, go to the LatticeProtein app
at https://nanohub.org/tools/LatticeProtein. (NanoHUB is a science computing site admin-
istered in part by Purdue, in collaboration with other research universities; you can create a free
account using your Purdue login credentials.) There you can design peptides with between 1 and 15
amino acids, chosen from the four options (A, E, K, and P) that we’ve described above. You’ll use
this app to complete your homework assignment.
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25 Protein Folding: Kinetics

25.1 Introduction to Kinetics

The LatticeProtein app we introduced last lecture helps to illustrate the driving forces that determine
the first half of the protein folding problem: How does sequence determine the final structure of a
folded protein? Even if we could answer that question exactly, however, there remains a difficult
“second half” to the problem: How do proteins sort through an astronimical number of possible
conformations to locate the “correct” folded structure in a reasonable amount of time?

This question of how fast a protein is able to transition between unfolded and folded states is
our first introduction to the field of kinetics which studies how fast different physical and chemical
processes occur. In contrast to thermodynamics, which focuses on the physical properties of equilib-
rium systems, kinetics asks how quickly the system reaches equilibrium. Such questions will be the
focus of our next several lectures.

Before we dig into the topic, though, let’s stop to define the scope of our discussion. “Kinet-
ics” is a vast field, encompassing everything from enzyme ligand-binding problems to carbohydrate
metabolism and even the rate at which chlorophyll molecules absorb electromagnetic energy from
the sun. Since we can’t possibly cover all of these topics in this course, we will instead simply cover a
smattering of (hopefully!) interesting examples, introducing key concepts along the way. In today’s
lecture, we’ll get a glimpse at how macroscopic protein-folding properties can help us to infer the
basic mechanisms by which proteins fold at the microscale.

25.2 Levinthal’s Paradox

The basic kinetic problem we’re interested today is: How does a protein manage to fold to the
“correct” three-dimensional structure so quickly? Experimentally, it’s known that proteins can
be “denatured” by either raising the temperature or adding certain “chaotropic” (literally “chaos-
inducing”) agents like urea or sodium dodecyl sulfate. In these denatured states, the native secondary
structure of the protein is lost, and the protein is able to access an astronomical number of different
conformations (the quoted paragraph below gives an estimate). In our lattice polymer simulations,
this effect is visible via the observation that the partition function Z ′ increases with increasing
temperature.

All of these experimental observations are consistent with expectations from statistical mechanics:
The protein occupies a well-defined most-stable state at low temperatures but samples a much larger
number of conformations at high temperatures. What is not necessarily expected is that, when the
temperature is again lowered, the protein is able very quickly (typically in much less than a second)
to “re-discover” the correct folded structure. The significance of this experimental finding is made
clear when one considers just how many possible states an unfolded protein has available to it.
If these states were sampled randomly, it would take an astronomically long time for the protein
to fold. This contrast between real and naively expected protein-folding rates is often termed the
“Levinthal Paradox” after Cyrus Levinthal who first formulated it precisely.

A concise summary of the paradox is provided by a recent protein-folding review:

How long does it take for a protein to fold up into its native structure? In a standard
illustration of the Levinthal paradox, each bond connecting amino acids can have several
(e.g., three) possible states, so that a protein of, say, 101 amino acids could exist in
3100 = 5 · 1047 configurations. Even if the protein is able to sample new configurations
at the rate of 1013 per second, or 3 · 1020 per year, it will take 1027 years to try them all.
Levinthal concluded that random searches are not an effective way of finding the correct
state of a folded protein. Nevertheless, proteins do fold, and in a time scale of seconds
or less. This is the paradox.
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[Quote from: Zwanzig R, Szabo A, Bagchi B. “Levinthal’s paradox.” Proc Natl Acad Sci U S A.
1992;89(1):20-22. doi:10.1073/pnas.89.1.20. Available online at https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC48166/]

In other words, Levinthal’s paradox points out that, if proteins really folded by sampling all
possible conformations until they found the “correct” lowest-energy state, then it would take them
an impossibly long time to fold!

25.3 Resolution of the “Paradox”

How is this paradox resolved? It might be a stretch to say that the answer is fully known, but
certainly we can outline some general principles.9

First, note that the problem outlined above – proteins in real life fold much faster than might be
expected based on simple back-of-the-envelope calculations – isn’t really a proper paradox (in the
sense of a “self-contradiction”): it’s just a sign that some of our back-of-the-envelope calculation
made an invalid assumption somewhere along the line! In other words, real proteins must not
actually sample all possible configurations on their way to the folded state. This was exactly the
point Cyrus Levinthal was trying to make in his original paper.10

Levinthals argument thus shows that, however it is that proteins fold, they must not simply
sample all possible configurations until they find the right one. From here, two possible explanations
can be suggested:

• Folding Pathways: Levinthal’s proposed solution to this problem was to propose that pro-
teins fold by way of specific mechanistic pathways, i.e., that every time the protein fold it
follows a single (or at least a small number) of well-defined paths from one unfolded state
to another unfolded state until it reaches the final conformation. A hypothetical example is
illustrated in the image below where a fully extended peptide chain first forms a β-turn trig-
gered by a proline residue and stabilized by a Glu-Lys contact, which in turn brings the final
Glu/Lys pair into close enough contact to “close the loop” to the final state. At the time of
Levinthals’ proposal, however, there was no way to verify this model, either experimentally or
theoretically. Thus for many years it remained simply an untested hypothesis.

9For a more complete discussion, see http://ww2.chemistry.gatech.edu/~lw26/course_Information/6572/

papers/karplus_1997.pdf
10In fact, Levinthal was arguing that proteins might not even make it to the lowest-energy conformation at all; they

might remain kinetically trapped at a local energy minimum somewhere along the way. For Levinthal’s argument see
https://www.cc.gatech.edu/~turk/bio_sim/articles/proteins_levinthal_1969.pdf
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• Folding Funnel: More recently, based in part on ultrafast kinetics measurements of real
protein-folding events, it has been recognized that even without unique folding pathways, global
driving forces can push an unfolded peptide rapidly toward many different possible pathways
that all lead eventually to the folded state. Perhaps the most famous model for such process is
the hydrophobic collapse model that suggests the key driving force for many proteins to fold is
that hydrophobic residues like Ala “collapse” quickly to form a hydrophobic core (or “molten
globule”) that, although not actually part of the native structure, forces many residues into
close enough contact that they rapidly “find” their bonding partners. For example, consider
the lattice peptide populations depicted below for the peptide AAKPKPPEPAPA. Although
there is only one unique lowest-energy state, there are a variety of similar states that are
stabilized by both polar and hydrophobic interactions. An initial “collapse” event in which
the terminal Ala residues on each end come into contact with each other can push the peptide
rapidly toward the final folded state by keeping the remaining residues close enough to their
final conformations that they can find their ideal binding partners.

The situation for any real protein is, of course, much more complex than can be described by
simple lattice models and very likely contains features similar to each of these models, and perhaps
many others. Modern computational power and improved molecular dynamics force fields provide a
(hopefully!) more realistic picture of how real proteins fold. The video linked below shows one such
example, one of the earliest explicit molecular dynamics simulations of a folding pathway for a real
peptide: https://www.youtube.com/watch?v=gFcp2Xpd29I
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26 Chemical Kinetics

26.1 Reaction Rates

The last section introduce the science of kinetics with the particular example of protein folding. But
the question of “how fast” a process occurs can be applied to any chemical reaction and, indeed,
even to many non-chemical processes. Although we’ll have time in this course for only a cursory
introduction to the topic, we can at least set the stage for future study by introducing some basic
vocabulary.

To begin, we need to clarify is what exactly we mean when we ask “how fast” a reaction occurs.
This may sound trivial, but there are actually several different ways we define reaction “speed”. For
example, when we ask “how fast” a reaction occurs, we could mean: “How many moles of reactant
are consumed in each second?” But by this definition, just doubling the size of our reactive solution
also doubles “how fast” the reaction occurs. A craft brewer, for example, can (in principle) produce
beer twice as fast in a 400 L fermentation tank compared to a 200 L tank.

But this scaling of the reaction “speed” with system size has nothing to do with the chemistry
taking place inside, and it’s not usually what we care about in chemical kinetics. In comparing
fermentation rates between differently sized vats, for example, the craft brewer will be interested in
the rate at which alcohol concentration changes, not the overall rate at which alcohol is produced
(which depends on the size of the vat). For the same reason, in chemical kinetics, the term “reaction
rate” is reserved for the rate at which the concentration of a given species changes with time. It’s
also convenient to divide the measured rate by the stoichiometric coefficient of the measured species,
so that all reactants and products produce the same reaction rate. Formally, we can summarize this
definition as follows:

The reaction rate v for a generic chemical reaction

ν1X1 + ν2X2 + ... + νNr
XNr

−−→ νNr+1XNr+1 + νNr+2XNr+2 + ... + νNr+Np
XNr+Np

is defined as

v = ± 1

νi

d[Xi]

dt
(301)

where [Xi] refers to the molar concentration of species Xi; the “+” sign applies if species i is a
product, and the “-” sign applies if the species i is a reactant.

With this clarification, we can state precisely that the central question in chemical kinetics is to
determine how the rate v of a chemical reaction varies with parameters like temperature, pressure,
and (most importantly) the concentration of each species in the system. In this course, we’ll primarily
focus on reaction kinetics in solution, where concentration and temperature are usually the primary
driving forces. Pressure plays a much greater role in gas-phase kinetics, but we won’t worry too
much about it in this course.

26.2 Rate Laws and Elementary Reactions

Information about reaction rates are conveniently summarized in rate laws, an equation of the form

v = f
(
[X1], [X2], ..., [XNr+Np

];T
)
, (302)

where f(...) denotes some mathematical function of the concentrations [X1], ..., [XNr+Np
] of the

various reactants and products in the system; the rate law also depends parametrically on the tem-
perature T , although our focus is usually on the species concentrations. In general, these functions
can be monstrously complex and often can’t be determined exactly.
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However, there some simple (but important!) cases cases where explicit expressions can be
obtained. In this subsection, we’ll discuss elementary reactions, for which rate laws can be written
down directly in terms of empirical “rate constants” – temperature-dependent parameters that affect
the reaction rate. In the next subsection, we’ll discuss in more detail where those rate constants
come from, and especially how they vary with temperature.

To begin, a definition:

An elementary reaction is one that takes place in a single step at the molecular level.
Specifically, this means that

• The reaction happens only when all reactants encounter each other simultaneously to
form a reactive complex.

• Once the reaction begins, it goes directly to completion, without the formation of multiple
transition states.

For illustration, the nearby figure gives two examples of elementary reactions (left panel) and
two examples of reactions that cannot be considered elementary. The A+B → C reaction on the far
left is elementary since the reaction proceeds to completion as soon as the two reactants collide. The
A → B reaction is elementary since it involves only a single species A converting spontaneously to
another species B. In contrast the reaction A→ B → C → D is not elementary because it involves
multiple intermediate steps. Similarly, the multi-step A + B + C → D reaction is not elementary
because the A and B species must react to form a complex before they combine with reactant C to
drive the reaction to completion.

For elementary reactions, it’s easy to write down reaction rate laws. Because elementary reactions
occur whenever (and only when) all the reactants encounter each other, the rate of the process is
proportional to the rate at which such encounters occur. In both gas and solution phases, where
the various reactants are distributed more or less randomly in space, this “encounter probability”
is directly proportional to the concentration of each reactant. If a particular reactant appears more
than once in the reactive complex, its concentration will occur more than once in the rate law. In
general, an elementary reaction of the form

ν1X1 + ν2X2 + ...+ νNr
XNr

→ (products) (303)

will have a reaction rate

v = k[X1]ν1 [X2]ν2 ...[XNr ]
νNr , (304)

where k is a numerical value called a rate constant.
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26.3 Reaction Order

In Eq. (304), it is notable that the reaction rate v scales with the concentration of each species [Xi]
raised to the power νi of its stoichiometric coefficient. This exponent is referred to as the order
of the reaction with respect to species Xi. The overall order of the reaction is the sum of all the
stoichiometric coefficients of the reactants, i.e., ν1 + ν2 + ...+ νNr .

In the case that a reaction involves only a single species, the rate law becomes particularly simple
and can be integrated directly. For illustration, consider the following examples:

• First Order: A→ B. The rate law for such reactions reads

v = −d[A]

dt
= k[A],

which can be integrated to give
[A](t) = [A]0e

−kt

• Second Order: 2A→ B. The rate law reads

v = −1

2

d[A]

dt
= k[A]2,

which can be integrated to give

[A](t) =
[A]0

1 + 2k[A]0t
.

• Third Order: 3A→ B. The rate law reads

v = −1

3

d[A]

dt
= k[A]3,

which can be integrated to give

[A](t) =
[A]0√

1 + 6k[A]20t
.

For illustration, the figure below presents a plot of concentration ([A](t)) versus time for first-,
second-, and third-order reactions, with parameters chosen so that the initial slope is the same. Note
that in all three cases, the rate of the reaction (i.e., the slope of the concentration curve) eventually
plateaus, approaching zero as the reactant A is consumed. Given the same initial rate, however,
the 1st-order reaction goes to completion most quickly, while the 3rd-order reaction approaches
completion most slowly. This is due to the fact that the higher reaction orders are more sensitive
to the concentration of the reactant A and, thus, their reaction rates approach zero more quickly as
the substrate is consumed.

For non-elementary reactions, rate laws become much more complicated and it is not always
possible to assign a specific “order” of the reaction with respect to each species. However, when
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the rate of a reaction does scale in a simple way (i.e., with a fixed exponent) with respect to the
concentration of a given species, we often say that the reaction is “first order” or “second order”
(depending on the exponent), even if the reaction isn’t elementary. Just keep in mind that for
non-elementary reactions such distinctions may hold only under limited circumstances: it could be
possible for a reaction to be first-order in reactant A under one set of conditions and second-order
in A under other conditions. Such rate-law dependence usually indicates that the reaction is not, in
fact, an elementary reaction.

26.4 Reaction Rates and Chemical Equilibrium

So far, we’ve treated chemical reactions as though they only go in one direction, e.g., A→ B. But
all reactions are (to some extent) reversible: if A → B is possible physically, then so is the reverse
reaction B → A. How does this reversibility affect reaction rates?

The short answer is that it’s complicated. The longer answer is that it’s simple to write down
formal rate expressions but more difficult to solve them. To illustrate, let’s work through the simple
A ⇀↽ B reaction already mentioned. If this is an elementary reaction, then the A → B direction
proceeds according to the simple rate law

vf = kf[A], (305)

just as if the reverse reaction weren’t at play at all. In this expression, the subscript “f” indicates
that this is for the forward reaction. Conversely, the rate of the reverse reaction B → proceeds
according to the simple rate law

vr = kr[B], (306)

where the subscript “r” indicates the reverse reaction. Now comes the complication: The rate at
which [A] changes with time depends on both the consumption of A by the forward reaction and the
production of A by the reverse reaction. Mathematically:

d[A]

dt
= vr − vf = kr[B]− kf[A]. (307)

The minus sign here on the vf term indicates that species A is consumed by the forward reaction.
A similar equation holds for the concentration of B:

d[B]

dt
= vf − vr = kf[A]− kr[B]. (308)

Such partial differential equations are generally much more difficult to solve than the simple rate
laws we encountered earlier. In many multi-species cases, we must resort to making approximations
to obtain simplified results, such as the Michaelis–Menten equation of enzyme kinetics.

However, even in complex systems, rate equations like this can often provide simple insight
into the equilibrium state of chemical reactions. Recall that chemical equilibrium is defined by the
fact that, on average, the reaction has stopped proceeding in any direction. Thus the overall rate
of change of concentration of any reactant or product must be zero. And this criterion alone is
sufficient to solve a set of rate equations to obtain expressions for the equilibrium concentration of
each species in the system.

For example, in our A ⇀↽ B case, setting d[A]
dt = 0 gives

kr[B]eq − kf[A]eq = 0 (309)

or after some rearranging:

[B]eq

[A]eq
=
kf

kr
. (310)
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But the factor
[B]eq

[A]eq
here should look familiar: this is exactly the equilibrium constant Keq for

the reaction A ⇀↽ B! For a one-to-one elementary chemical reaction, we thus obtain the simple
relationship

Keq =
kf

kr
. (311)

This simple example illustrates a more general relationship between rate constants and equilib-
rium constants. In general, a complete set of rate constants for even a complex reaction network is
sufficient to determine the corresponding equilibrium constants. This result rests on the fact that
the equilibrium constant reflects the point at which the rates of the forward and reverse reactions
are balanced: thus knowledge of both forward and backward reaction rates is sufficient to determine
the equilibrium constant.

Note, however, that the converse is not generally true: Knowing the equilibrium constant does
not generally allow us to determine rate constants. For example, if Keq in Eq. (311) is close to
one, it means that kf and kr are approximately equal. But this doesn’t tell us anything about the
magnitude of either constant: it could be that kf and kr are either both very large or both very
small. Insight into the actual values of the rate constants determines kinetic measurements that
directly follow reaction concentrations as a function of time.
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27 Big Ideas in Statistical Mechanics and Kinetics

• The goal of statistical mechanics is to find a reliable way to predict macroscopic thermody-
namic properties as average values over microscopic physical models.

• The central problem in statistical mechanics is to figure out how to assign probabilities pµ
to the various microstates µ that a system might occupy.

• Our approach to this problem is based on the Maximum Entropy hypothesis that we should
always get the right values if we assume as little information as possible about what microstates
the system “lives in”.

– Why do we do this? Because experimentally we find that thermodynamic states are
always defined by only a few macroscopic parameters, e.g., N , V , and T . If only a few
parameters are needed to define the system state, then we shouldn’t need information on
any other parameters to assign the probabilities. Assuming more information would add
constraints that aren’t there in reality!

– How do we do this? We use the Shannon information entropy s({pµ}) as a quan-
titative measure of how much uncertainty there is in the system. Maximizing s means
minimizing the assumed information!

• The method of Lagrange Multipliers is the technical tool we need to maximize the uncer-
tainty subject to the experimental constraints

– Key Idea: maximizing a function f(x) subject to constraints c1(x) = 0, ..., cK(x) = 0
is equivalent to maximizing the auxiliary function

g(x) = f(x) + λ1c1(x) + ...+ λKcK(x),

where λ1, ..., λK are unknown constants that must be determined from the constraints.

– Key Idea: We maximize the function g(x) by requiring that(
∂g

∂xi

)
xj 6=xi

= 0,

i.e., that taking a step in any direction doesn’t change the value of g(x).

• In statistical mechanics, we consider two “flavors” of Thermodynamic Ensemble:

– The Microcanonical Ensemble has fixed N , V , and U . This corresponds to an isolated
system.

∗ We optimize over the probabilities pµ for all microstates µ that have exactly the right
values for N , V , and U , subject to the constraint∑

µ

pµ = 1.

∗ The outcome is that the probabilities are equal for all states that have the right
energy, volume, and number of particles.

– The Canonical ensemble has fixed N and V , and T . This corresponds to a constant-
volume, constant-temperature system.
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∗ We optimize over the probabilities pµ for all microstates µ that have exactly the right
values for N and V subject to the constraints∑

µ

pµ = 1

and ∑
µ

εµpµ = U.

∗ This leads to probabilities

pµ =
e−βεµ

Z
, (312)

where

Z ≡
∑
µ

e−βεµ (313)

is the partition function and

β =
1

kBT
. (314)

∗ The partition function Z is a normalization constant that ensures that the probabil-
ities pµ sum to one.

∗ If we shift the energy scale so that the lowest-energy microstate has energy εµ = 0,
then the modified partition function Z ′(T ) counts the number of microstates
accessible to the system at a given temperature.

• The protein folding problem asks

– How can we predict the three-dimensional structure of a protein from its sequence?

– How do real proteins locate the “correct” folded structure from the astronomically large
number of different possible conformations?

• Lattice Proteins (or lattice polymers) are simplified models that let us test and understand
how different forces affect protein folding.

• Effects that tend to drive protein folding forward (i.e., favor folding) include

– Formation of intra-protein hydrogen bonds in the protein backbone which lower the energy
of the system

– The increase in the entropy of the surrounding water due to the reduced surface area of
the protein (the “hydrophobic effect”)

• Effects that tend to oppose protein folding include

– The decrease in entropy of the protein due to the smaller number of possible conformations
in the folded state

– The loss of favorable hydrogen-bonding interactions between polar protein residues and
the solvent, which raises the energy of the system

• The specific molecular properties of individual amino acids in the peptide chain controls the
final conformation of the protein. Examples include:
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– Alanine (Ala / A) is hydrophobic

– Lysine (Lys / K) holds a positive charge

– Glutamate (Glu / E) is negatively charged

– Proline (Pro / P) is sterically constrained and likes to form “kinks” in the chain

• Levinthal’s Paradox notes that it would take proteins billions of years to fold if they sampled
all the possible conformations available to them

• Two possible resolutions to Levinthal’s paradox include

– Folding Pathways: The protein may be driven by favorable interactions to follow a
specific sequence of conformations to quickly move from the unfolded state to the folded
state

– Folding Funnel: There may be global driving forces like “hydrophobic collapse” that
keep the protein close enough to the native structure that it eventually locates the cor-
rect fold. (I.e., there may be many different “folding pathways”, but they all bring the
structure close enough to the native conformation to find the correct fold quickly.)

• Kinetics is the study of how fast a process happens or how quickly it reaches equilibrium.

• The rate of a chemical reaction

ν1X1 + ν2X2 + ...+ νNr
XNr

−−→ νNr+1XNr+1 + νNr+2XNr+2 + ...+ νNr+Np
XNr+Np

is a measure of how quickly the reaction proceeds in the forward direction:

v = ± 1

νi

d[Xi]

dt
,

with the “−” sign applicable if species Xi is a reactant (indicating that it is consumed by the
reaction) and the “+” sign applicable if species Xi is a product (indicating that it is produced
by the reaction). Note that the rate is scaled by the stoichiometric coefficient νi so that the
rate is independent of which reactant or product we choose to measure it.

• The units for a reaction rate v are M/sec = moles/(liter · s)

• A rate law is a mathematical relationship

v = f
(
[X1], [X2], ..., [XNr+Np

];T
)

between a reaction rate v and the concentrations [X1], [X2], ... of the various chemical species
involved in the reaction.

• A reaction is said to be of nth order in species X if the reaction rate scales with concentration
as [X]n.

• An elementary reaction is one that takes place in a single step at the molecular level. Rate
laws for elementary reactions take the simple form

v = k[X1]ν1 [X2]ν2 ...[XNr ]
νNr .

The coefficient k is called the rate constant.

• The units on the rate constant k depend on the reaction order. A first-order rate constant
has units of s−1.
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• The overall order of an elementary reaction is the sum of the stoichiometric coefficients of
its reactants ν1 + ν2 + ...+ νNr .

• Rate constants are denoted by lower-case k’s, while equilibrium constants are denoted
by upper-case K’s.

• A First Order elementary reaction (e.g., A→ B) has a rate law of the form

v = −d[A]

dt
= k[A],

which can be integrated to give
[A](t) = [A]0e

−kt.

In the absence of the reverse reaction, the reactant concentration decays exponentially.

• The rate of higher order chemical reactions depend more sensitively on reactant concentra-
tions than do first-order reactions. (The rate slows down more rapidly as the reactants are
consumed.)

• Real reactions are, to some extent, reversible. A reaction is at equilibrium when the rates
of the forward and reverse reactions are equal.

• In a first-order reversible reaction A ⇀↽ B, setting the overall rate of A (or B) consumption to
zero gives

Keq =
kf

kr
,

where kf and kr are the respective rates for the forward and reverse reactions.

• More generally, equilibrium constants Keq can be calculated if all rate constants are known.

• In contrast, rate constants cannot be calculated from equilibrium constants alone.

• Brownian motion is the random motion that microscopic particles go through in a fluid. At
the macroscopic scale, Brownian motion leads to diffusion.

• The random walk is a simple probabilistic model for Brownian motion.

– An unbiased random walk proceeds with equal probability in any direction.

– A biased random walk prefers to move in one direction relative to others.

• Brownian motion provides a good model for the way many real reactions move along their
reaction coordinate, an “abstract one-dimensional coordinate which represents progress
along a reaction pathway.” (https://en.wikipedia.org/wiki/Reaction_coordinate).

• The Arrhenius Equation

k = Ae−
Ea
RT

is an empirical relationship that describes the dependence of many rate constants k on tem-
perature.

• The Arrhenius prefactor A indicates how quickly a reaction can “diffuse” or “randomly walk”
along the reaction coordinate.

• The activation energy Ea in the Arrhenius equation represents an energy barrier the reaction
must overcome to proceed to completion.
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28 The Canonical Ideal Gas

28.1 Introduction

With the statistical tools we’ve developed, we’re now ready to give a more complete account of
the thermodynamic properties of ideal gases. Early in the course, we derived an expression for the
energy of a monomeric ideal gas, and later related that energy law to the temperature. In this
lecture, we’ll repeat the derivation of the energy expression using our new statistical tools and then
extend the treatment to consider a diatomic ideal gases like O2 and N2.

28.2 Monomeric Ideal Gas

Let’s begin with a box of N monotomic ideal gas atoms contained inside a sealed box at fixed
temperature, i.e., average energy. The total Hamiltonian H for the N gas particles is

H
(
x,y, z,v(x),v(y),v(z)

)
=

N∑
i=1

m

[(
v

(x)
i

)2

+
(
v

(y)
i

)2

+
(
v

(z)
i

)2
]

2
, (315)

where m is the molecular weight of the gas, xi, yi, and zi are the three Cartesian coordinates of

the ith atom, and v
(x)
i , v

(y)
i , and v

(z)
i are the corresponding velocities. Since the coordinates and

velocities are continuous functions, the partition function is calculated as an integral

Z =

∫
V

dx

∫ ∞
−∞

dv
(x)
1 ...

∫ ∞
−∞

dv
(z)
N e−βH, (316)

where the integral dx indicates an integral of the spatial coordinates of each particle over the entire
volume of the box: ∫

V

dx = V N . (317)

Since the exponent can be factored as

e−βH =

N∏
i=1

e−
βm(v(x)

i )
2

2 e−
βm(v(y)

i )
2

2 e−
βm(v(z)

i )
2

2 , (318)

the remaining integrals can be calculated as∫ ∞
−∞

dv e−
βmv2

2 =

√
2π

βm
. (319)

Here we’ve used the Gaussian integral identity:

Gaussian Integral ∫ ∞
−∞

dxe−
x2

2σ2 =
√

2πσ2, (320)

by taking σ2 = 1
βm . Since there are three of these integrals for each particle, the velocity integrals

in total produce a factor of
(

2π
βm

) 3N
2

. The partition function is then

Z = V N
(

2π

βm

) 3N
2

. (321)
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Now, in the canonical ensemble, the thermodynamic energy U must be equal to the average
ensemble energy. Eq. (276) thus tells us that

U = −∂ lnZ

∂β
(322)

= − ∂

∂β
ln

[
V N

(
2π

βm

) 3N
2

]
(323)

= − ∂

∂β

(
N lnV +

3N

2
ln

2π

βm

)
(324)

=
3N

2

∂

∂β

(
ln
βm

2π

)
(325)

=
3N

2

m

2π

2π

βm
(326)

=
3N

2β
. (327)

Recalling the relations

β =
1

kBT
(328)

R = NAkB (329)

n =
N

NA
, (330)

we see that this is exactly our original ideal gas energy formula [Eq. (42)]:

U =
3N

2β
=

3NkBT

2
=

3 N
NA

(NAkB)T

2
=

3

2
nRT. (331)

So for the monatomic ideal gas, the maximum entropy approach gives exactly the same result as we
obtained earlier by directly integrating Newton’s equations. (Good news!)

28.3 Diatomic Ideal Gas

With our new statistical tools, however, we can readily solve problems that would be extremely
difficult if we started from Newton’s equations. As a useful example, let’s see what happens if we
repeat our calculation for a diatomic ideal gas, a good model for atmospheric gases like O2 and N2.
To a good approximation, the Hamiltonian for a diatomic gas can be broken up into three separate
terms

H = Htrans +Hvib +Hrot (332)

corresponding to the translational (trans) motion of the molecules through space, the vibrational
(vib) motion of the bond length between the two atoms, and the rotational (rot) motion of the
molecule around its center of mass. Mathematically, Htrans is exactly the monomeric ideal gas
Hamiltonian of Eq. (315); the only update is that m represents the mass of the whole molecule
rather than that of a single atom. The vibrational Hamiltonian

Hvib =

N∑
i=1

ω2q2
i + p2

i

2
(333)
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describes the expansion and compression of the bond length qi between the two atoms of the ith gas
molecule, while the rotational Hamiltonian

Hrot =

N∑
i=1

L2
A,i

2I
+

N∑
i=1

L2
B,i

2I

accounts for the rotational energy associated with the angular momenta LA,i and LB,i of the ith

molecule rotating around its center of mass. Note that a diatomic molecule can rotate in two distinct
ways, which is why there are two terms LA,i and LB,i; For example, in the figure, the molecule is
shown rotating in the plane of the page, but it might also rotate out of the plane of the page as well.
(The quantity I is called the moment of inertia of the molecule, and depends on the molecular mass
and bond length.)

You don’t need to memorize the details of each of these terms. What you should remember is
that

Key Points in Diatomic Ideal Gas Calculation

• There are three independent contributions to the diatomic ideal gas Hamiltonian, corre-
sponding to translational, vibrational, and rotational motion.

• Each contribution to the Hamiltonian depends quadratically on the relevant coordinates

and/or momenta. (Explicitly, Htrans is proportional to the sum of
(
v

(x)
i

)2

,
(
v

(y)
i

)2

, and(
v

(z)
i

)2

, Hvib is proportional to the sum of q2
i and p2

i , and Hrot is proportional to the

sum of L2
i,A and L2

i,B .)

• In total, there are seven quadratic terms in the Hamiltonian.

This last two observations are important because they allow us to find the partition function Z
for the diatomic gas almost without doing any new calculations at all. Because the translational,
vibrational, and rotational contributions to the Hamiltonian are all independent, the total partition
function can be factored as

Zdiatom =

∫
dΓtrans

∫
dΓvib

∫
dΓrote

−β(Htrans+Hvib+Hrot) (334)

=

(∫
dΓtranse

−βHtrans

)(∫
dΓvibe

−βHvib

)(∫
dΓrote

−βHrot

)
(335)

= ZtransZvibZrot. (336)
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Here the notation
∫
dΓtrans is a short-hand for integrating over all the spatial coordinates and

momenta of the gas particles,
∫
dΓvib likewise indicates integration over the bond-stretch coordinates

qi and momenta pi, and
∫
dΓrot is an integral over the rotational angular momenta Li and the

corresponding rotation angles θi. On the second line, we’ve regrouped the exponents in each term
into separate integrals, each of which we identify in the third line as a separate partition function
Ztrans, Zvib, or Zrot. This regrouping is only possible because the translationa, vibrational, and
rotational degrees of freedom are independent in our model.

From our earlier calculation, we already know that

Ztrans = V N
(

2π

βm

) 3N
2

(337)

since the translational part of the Hamiltonian is exactly the same as for the monatomic case (except
that the mass is now a molecular mass instead of atomic mass). But we can in fact use this same
result to write down almost immediately the remaining partition functions Zvib and Zrot. Looking
back over our earlier derivation, we see that each Gaussian integral contributes a factor of

√
2πσ2,

where σ2 is whatever factor is needed to put the corresponding term of the Hamiltonian in the form
x2

2σ2 . In particular, we can write

σ2
q =

1

βω2
(338)

σ2
p =

1

β
(339)

σ2
L,A = σ2

L,B =
I

β
. (340)

Since there are N such Gaussian integrals for each degree of freedom, the complete partition funtions
are

Zvib =

(
2π

β2ω2

)N
2

(341)

Zrot =

(
2πI

β

)N
. (342)

Now notice that the natural log of the partition function can be split up as

lnZ = ln (ZtransZvibZrot) (343)

= lnZtrans + lnZvib + lnZrot (344)

= ln

(
V N

(
2π

m

) 3N
2

)
− lnβ

3N
2 + ln

(
2π

ω2

)N
2

− lnβN + ln

(
2πI

β

)N
− lnβN . (345)

Here in each term we have factored out all the factors involving the inverse temperature β
N
2 – one

for each quadratic term that appears in the Hamiltonian.
The reason this form is useful is because the energy U can now be calculated easily by dropping

all terms independent of β:

U = −∂ lnZ

∂β
= − ∂

∂β

(
−3N

2
lnβ −N lnβ − N

2
lnβ

)
(346)

=
7N

2

d lnβ

dβ
=

7N

2β
=

7NkBT

2
=

7

2
nRT. (347)
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28.4 The Equipartition Principle

In addition to giving us a useful formula for the energy of a diatomic ideal gas, this formula illustrates
a very general principle in classical mechanics: that energy is partitioned equally among different
degrees of freedom in equilibrium systems. Formally, this result is known as the equipartition prin-
ciple:

The Equipartition Principle: At equilibrium, energy is partitioned equally among all
quadratic degrees of freedom in a system. Each quadratic degree of freedom “stores” an energy
of kBT

2 at equilibrium.

The equipartition principle gives us a simple explanation for why some substances have larger specific
heats than others: substances with many degrees of freedom have more room (i.e., degrees of freedom)
in which to “store” energy, so it takes more energy to bring about the same change in temperature.
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29 Something Rotten in Denmark: The Fall of Classical Me-
chanics

29.1 Heat Capacities of Real Gases

The last section closes our study of classical statistical mechanics. Conveniently, it also opens our
study of quantum mechanics: The first hint that something was missing from classical Newtonian
mechanics was that it failed – even qualitatively – to accurately describe the heat capacities of real
diatomic gases. While the formulas worked perfectly well for monatomic gases like Ar, Kr, and Xe,
strange behavior was observed experimentally for diatomic gases like O2, N2, and H2.

To see the problem, note that the formulas we derived in the last section for the energy of ideal
gases can also be used to calculate the heat capacities. In particular, a very brief calculation gives:

CV ≡
dQ

dT

∣∣∣∣
V

=

(
∂U

∂T

)
V

=


3
2nR, monatomic

7
2nR, diatomic

(348)

Thus, according to our calculations, the heat capacities of both types of gas should be independent
of temperature, with the value of the diatomic heat capacity greater than the monatomic capacity
by a term 4nR

2 = 2nR.
Unfortunately, when the heat capacity of real gases are measured experimentally, the results look

very different. The figure sketches the behavior of the specific heat capacities for real monatomic
(blue line) and diatomic (red line) gases. The monatomic gas behaves exactly as expected: C̄V is
independent of T , with a constant value of 3R

2 . The specific heat capacity for the diatomic gase

approaches the expected value of 7R
2 at (very!) high temperatures (thousands of Kelvin), but is

much closer to 5R
2 at low temperatures.

Such findings were deeply worrying to the founders of statistical mechanics, particularly to James
Clerk Maxwell who originally derived the classical results. At first, scientists worried that the entire
atomistic picture of the world that statistical mechanics builds on might be in error. Soon, however,
evidence begin to pile up that the statistical (and therefore atomistic) part of the theory was just
fine; it was the mechanics (based on Newton’s laws) that was failing.

29.2 Blackbody Radiation

The most famous – and arguably the definitive – experimental finding that struck down Newtonian
physics was that experimental data on blackbody radiation was in direct contradiction to classical
theory.
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Blackbody radiation refers the electromagnetic energy emitted by a material system that is
at equilibrium at a fixed temperature T .

There are several ideas here that may be more or less unfamiliar, so let’s unpack them carefully.
Electromagnetic radiation is the energy carried by light waves.11 Emission is the process of light
radiating away from an object, carrying energy with it; for example, an incandescent light bulb emits
radiant energy from a tungsten filament that is, in turn, heated by the electricity passing through
it. More subtle – but critical for our discussion – is that the requirement that the emission occur at
equilibrium at temperature T implies that the material is also absorbing light (i.e., accepting radiant
energy) at the same rate that the energy is being emitted.

A simple way to think about this is to imagine an object inside of a box with mirror-coated
walls, as pictured in the figure below. The object’s thermal energy causes it to emit radiation
(depicted as lines emanating outward from the object). If this were the only process taking place,
the temperature of the object would gradually drop as it loses energy via emission. But because the
walls are mirror-coated, the emitted light eventually “bounces” its way back to the object where it
is absorbed again. In this way, the temperature stays fixed at the equilibrium value T .

The question of interest to scientists around the turn of the 20th century was: What is the
spectrum of blackbody radiation from an object at temperature T?

The spectrum ρ(ν) of a radiation source is a curve that plots how much electromagnetic energy
is emitted at each frequency ν of light.

In terms of our “mirrored box” example, measuring the blackbody spectrum corresponds to poking a
small hole in the side of the box, putting up a filter so that only light of a single frequency can come
out at a time, and then measuring (for each frequency filter) how much radiant energy is emitted.
In a modern-day experiment, the set-up might look something like what’s shown in the figure below.

11Technically, “light” is usually reserved for radiation in the visible range of the spectrum, but the physics is identical
for all electromagnetic radiation, from the microwave to the extreme ultraviolet.
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29.3 Kirchhoff: Everything emits the same at equilibrium

Why were scientists so interested in this question? Well, partly because the process of absorption and
emission of radiation wasn’t very well understood yet. And partly because the blackbody radiation
spectrum turns out to have a surprisingly general form. In fact, the physicist Gustav Kirchhoff
demonstrated theoretically that all objects in thermal equilibrium at a given temperature T must
give rise to the same blackbody radiation spectrum.

How can this be true? Kirchhoff arrived at this conclusion through a simple though experiment,
a “proof by contradiction” that invokes our old friend, the Second Law of Thermodynamics. Imagine
two mirrored boxes, each containing an object at thermal equilibrium at temperature T . Suppose
that the blackbody radiation spectrum of the two objects are not identical. Specifically, let’s suppose
that the object on the right emits more orange-colored light. If we then poke a small hole in each
box, place a small optical filter over the whole that allows passage only of orange light, and align
the two holes so that orange light can pass between the two boxes, what will happen? Because the
box on the right emits more orange light, there will be a net transfer of energy into the box on the
left. Thus energy will flow spontaneously from one object at temperature T to another object at the
same temperature! This flow of energy could, in turn, be used to drive a heat engine that would
produce work without any net input of heat – a violation of the Second Law!

The only way to avoid this problem – and thus preserve the Second Law of Thermodynamics –
is if all objects exhibit the same blackbody spectrum at equilibrium at a given temperature.

29.4 Theoreticians Everywhere: Let’s pretend everything is harmonic!

Kirchhoff’s proof was of great interest to physicists since it meant that if you could solve the black-
body radiation problem for any material system, you had solved it for all material systems. In fact,
the material system doesn’t even need to really exist: so long as you can solve the problem for some
hypothetical material, the results should hold for real systems too.
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As a general rule in physics, if one has a choice of what system to study, the easiest is almost
always the harmonic oscillator. For that reason, theoretical physicists of all stripes began to imagine
materials made entirely of harmonic oscillators. The exact details of what elements or chemicals
could compose such systems didn’t matter; what mattered is that one could imagine an object made
up entirely of tiny harmonic oscillators (i.e., springs), oscillators with every possible oscillation
frequency imaginable, from zero to infinity. With such a hypothetical material, the blackbody
radiation problem could be solved!

And solved it was. Using classical statistical mechanics (in particular the Equipartition Theorem
illustrated in the last lecture), along with basic electrodynamics, it was quickly shown that the
blackbody spectrum for harmonic systems – and hence for all systems must have the form

ρ(ν) = 2kBT
ν2

c2
, (349)

where c ≈ 2.9979 · 108 m/s is the speed of light.

29.5 Experimentalists Everywhere: It doesn’t work!

The formula was a beautiful piece of theory work. Unfortunately, it suffered from two problems:

• It doesn’t describe the blackbody spectrum of real materials, and

• If it did, we’d all be dead.

The first problem is illustrated in the figure below. Empirically, when the blackbody spectrum of
a real system was measured, it was found to resemble the red curve in the figure. As a function
of frequency ν, the spectrum first increases, then peaks (in this case in the infrared region near
200 THz) and begins to fall back toward zero at very high frequencies. The black curve is the
theoretical prediction of classical mechanics: that the radiant energy should increase continuously
with frequency (proportional to ν2) without limit!
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This predicted infinite increase in blackbody radiation at high frequencies became known as the
ultraviolate catastrophe, and with good reason: If blackbody emitters actually emitted radiation this
way, life on earth would be impossible! The sun, for example would constantly emit such a high
intensity of X-rays (along with even higher-energy radiation) that living creatures would be scorched
almost instantaneously.

At the turn of the 20th century, this failure seemed inexplicable. The arguments leading to
came from the very bedrock of what was then known of physics: Newton’s, equations, Maxwell’s
equations, and the Laws of Thermodynamics. Clearly something had to be wrong. But what?

29.6 Planck: It works if you quantize?

The first clue toward the answer came from a German physicist named Max Planck. Purely as a
mathematical exercise, Planck pointed out that the correct form for the blackbody spectrum was
obtained if one assumed that the energy states of the harmonic oscillators were quantized, i.e., that
they could take on only those energy values

εn = nhν, (350)

where ν was the frequency at which the oscillator vibrates, n was any non-negative integer (i.e.,
n = 0, 1, 2, ...), and h was a mathematical constant that now bears Planck’s name:

Planck’s Constant h has the numerical value

h ≈ 6.626 · 10−34 J s. (351)

Planck himself believed this result to be a coincidence; he spent much of the rest of his career
searching for an explanation for why such quantization might occur or what alternative explanation
could give the same result. To his surprise (and somewhat to his chagrin) he had started a revolution.
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30 Quantization and the Breakdown of Equipartition

30.1 Equipartition and Blackbody Radiation

In the last lecture, we stated that Planck’s ad hoc idea of “quantizing” harmonic oscillator energy
levels avoids the ultraviolet catastrophe and results in a blackbody radiation spectrum in close
agreement with experiment. The key to understanding why Planck’s approach avoids disaster has
to do with the equipartition principle we noted earlier in reference to the energy of the diatomic
ideal gas: namely, that all quadratic degrees of freedom in a system should, at equilibrium, acquire
an average energy of kBT

2 .
To see how this works, let’s pick apart the blackbody radiation formula [Eq. (349)] in more detail.

First, let’s rewrite the equation as

ρ(ν) = kBT ·
2ν2

c2
. (352)

In this form, the factor of kBT in the equation corresponds to the average energy stored in a harmonic
oscillator of frequency ν at equilibrium. Recall that, according to the classical equipartition principle,
all qudratic degrees of freedom should store an energy of kBT

2 at equilibrium. Since a harmonic
oscillator has two quadratic coordinates in its Hamiltonian (the bond distance q and the momentum
p), the total energy stored in each oscillator of frequency ν is just twice that value or

〈Eν〉 = kBT. (353)

The second term in in Eq. (352), the factor of 2ν2

c2 comes from electrodynamics (i.e., the study of
electromagnetic fields) and dictates how quickly radiation is emitted from a harmonic oscillator per
unit energy stored in the oscillator. It is this term that produces the ν2 divergence of the blackbody
spectrum ρ(ν) as ν increases toward infinity.

30.2 Averting Disaster

The reason Planck’s quantization “trick” avoids the ultraviolet catastrophe is that it replaces the
equipartition principle with a new result, based on the assumption that the oscillator states are
“quantized”, i.e., allowed to exist only at specific energy levels, namely those given by Eq. (350).

To see how this helps, let’s derive an expression for the average energy 〈Eν〉 for the energy of
an oscillator with frequency ν that is allowed only to take quantized energy levels. Since we want
to describe a blackbody object at a fixed temperature T , we work in the canonical ensemble. The
probability of the nth oscillator state is then

pn =
e−βnhν

Z
, (354)

where Z is the partition function

Z =

∞∑
n=0

e−βnhν . (355)

This complicated-looking infinite sum is surprisingly easy to evaluate. First note that it can be
rewritten as

Z =

∞∑
n=0

(
e−βhν

)n
. (356)
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Then use the identity

∞∑
n=0

xn = 1 + x+ x2 + ... =
1

1− x
(357)

to obtain

Z =
1

1− e−βhν
. (358)

Finally, use Eq. (277) to calculate the energy stored in each mode as

〈Eν〉 = −∂ lnZ

∂β
=

∂

∂β
ln
(
1− e−βhν

)
(359)

=
hνe−βhν

1− e−βhν
(360)

=
hν

eβhν − 1
. (361)

Replacing the factor of kBT in Eq. (352) with this new expression, we obtain

ρ(ν) =
hνe−βhν

1− e−βhν
· 2ν2

c2
=

2hν3

(eβhν − 1) c2
(362)

When ν is very small, the denominator here is approximately βhν, and the expression matches the
original (classical) formula. But as ν increases, the exponent eβhν increases toward infinity faster
than the factor of ν3 in the numerator. Thus the radiation spectrum ρ initially increases as ν2 for
very small frequencies, but as ν → ∞, it drops back down toward zero, reproducing exactly the
experimentally observed spectrum.

30.3 Energy-level Populations

To understand why quantization solves the blackbody problem, it may help to look at some examples
involving the populations pn of various harmonic oscillator energy levels. For this purpose, it’s
convenient to rewrite [Eq. (354)] as

pn =
e
− nν̄
kB
hc

T

Z
, (363)

where

ν̄ =
ν

c
(364)

is the frequency in units of “wavenumbers” (cm−1). Here c is the speed of light

c = 3.0 · 1010 cm/s, (365)

and the quantity kB

hc appearing in the pn exponent has a value

kB

hc
=

1.381 · 10−23J/K

(6.626 · 10−34J · s) · (3.0 · 1010cm/s)
≈ 0.7 cm−1/K. (366)

Thus the population of the nth harmonic oscillator state can be written as

pn ≈
e−

nν̄/cm−1

0.7·T/K

Z
. (367)
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The reason for all this unit manipulation is that it eliminates the awkwardness of working with
miniscule quantities like 10−34. For real molecules, vibrational frequencies typically span a range
from around 100 cm−1 to around 3700 cm−1. Since in most real-world applications, temperatures
likewise range from around 200 K (the temperature of dry ice) to 6000 K (the temperature of the
sun), the numerator and denominator of the quantity

nν̄/cm−1

0.7 · T/K
. (368)

take on a similar range of values, making it easy to do numerical calculations.
As a simple example, C=O stretch vibrations typically have a frequency of around ν̄ = 1600 cm−1.

What is the relative population p1

p0
of the ground (n = 0) and first excited state (n = 1) at room

temperature (roughly T = 300 K)? From Eq. (367), we find

p1

p0
≈ e−1· ν̄/cm−1

0.7·T/K

e−
0·ν̄/cm−1

0.7·T/K

= e−
1600

0.7·300 = e−
1600
210 ≈ 5 · 10−4. (369)

On the other hand, large scale deformation modes of proteins often have vibrational frequencies as
low as 50 cm−1. The relative population of the first vibrational excited state is dramatically higher

p1

p0
≈ e− 50

210 = 0.788. (370)

These simple calculations reflect a general result of quantization: the thermal excited-state popu-
lations for high-frequency vibrations are (at finite temperatures) much smaller than the correspond-
ing populations in low-frequency vibrations. Because of this “suppression” of thermal population in
high-frequency vibrations, the average energy stored in high-frequency coordinates is much smaller
at room temperature than the kBT

2 that would be expected from the classical equipartition principle.
In the blackbody problem, this suppression of high-frequency populations is indeed so rapid that it

overcomes the quadratic increase 2ν2

c2 of the emission rate, causing the radiation spectrum ρ(ν) to
tail off smoothly to zero at high frequency – exactly as is observed experimentally.

30.4 Ideal Gas Heat Capacities

A very similar calculation explains the anomalous heat capacity values calculated for diatomic ideal
gases. Because the translational, rotational, and vibrational degrees of freedom in the diatomic gas
are (approximately) independent of each other in the Hamiltonian, the total heat capacity can be
written as a sum of three separate contributions:

C̄V = C̄
(trans)
V + C̄

(rot)
V + C̄

(vib)
V . (371)

The classical calculation for the first two of these terms turns out to work just fine at room temper-
ature. The problem is with the third term, which describes the heat capacity associated with the
harmonic vibration of the diatomic molecular bond.

However, using the expression we just derived for the energy stored in a harmonic oscillator, we
can easily calculate the correct “quantized” heat capacity associated with bond vibration. Since

CV ≡
dU

dT

∣∣∣∣
V

, (372)
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the contribution C̄
(vib)
V to the heat capacity from harmonic vibrational motion is just

C
(vib)
V = N

d

dT

hν

e
hν
kBT − 1

= −N hν

kBT 2
e
hν
kBT

hν(
e
hν
kBT − 1

)2 (373)

= NkB

(
hν
kBT

)2

(
e

hν
2kBT − e−

hν
2kBT

)2 . (374)

This expression looks complicated, but it becomes simple in two different limits:

• When T → 0, the denominator in this expression approaches infinity. As a result, C
(vib)
V → 0.

• When T → ∞, the denominator approaches
(
hν
kBT

)2

, i.e., the same value as the numerator.

Thus, C
(vib)
V → NkB = nR.

In light of these predictions, the observed behavior for the diatomic ideal gas begins to make
sense. The translational and rotational degrees of freedom together contribute a 5nRT

2 to the en-

ergy, corresponding to the value of C̄V = 5R
2 measured experimentally at room temperature. At very

high temperatures (roughly when 0.7 ·T/K approaches ν̄/cm−1), the vibrational degrees of freedom
gradually become accessible and the heat capacity approaches the classical limit C̄V = 5R

2 +R = 7R
2 .
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31 Equations Gone Wild

31.1 Introduction

One of the things that makes quantum mechanics hard to wrap our minds around is that the
equations describing it operate (pun intended) on very different terms than more familiar relations
like Newton’s equations or Beer’s Law. In this section, we’ll take a tour through some of these
strange relations and describe what it is that makes them so strange – and so useful.

31.2 Plank’s Quantization of the Harmonic Oscillator

Arguably the very first quantum-mechanical equation to be written down was Max Planck’s relation

εn = nhν. (375)

for the possible energies εn of the harmonic oscillator (basically a ball on a spring). Here

h ≈ 6.626 · 10−34J · s (376)

is a universal constant known today as Planck’s Constant, while ν is the oscillation frequency of
the oscillator. The integer n is called a quantum number and can take on any non-negative value,
enumerating the possible energy states of the oscillator.

The implications of this statement go far beyond what Planck himself envisioned, but the key
point for today is that Planck realized that in order to match experimental data, the energy of the
harmonic oscillator had to be quantized, i.e., it had to have only a discrete set of possibilities: hν,
2hν, 3hν, etc. This may not sound revolutionary, but at the time it was earth-shattering. In classical
physics, the energy of a harmonic oscillator can take on a continuous range of values, depending on
the position of the particle (i.e., the extension of the spring) and the speed at which the particle is
moving. Planck found that a wide range of experimental observations could be explained only if,
at the microscopic scale, harmonic oscillators took on discrete or quantized energies. This was the
beginning of the quantum revolution.

31.3 Einstein’s Frequency Relation

Einstein picked up on Planck’s argument and pointed out that if the energy of material systems
(like harmonic oscillators) is quantized, then we should logically also assume that the energy of the
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electromagnetic field is quantized. This led Einstein to a simple expression

Ephoton = hν (377)

for the energy of what we now call photons – small “particles” of light that transport electromagnetic
energy through space. Again, this idea was revolutionary: since James Clerk Maxwell’s authoritative
treatment, light had previously been considered purely a wavelike phenomenon.12 It was Einstein’s
demonstration that another puzzling experimental observation, the photoelectric effect could be
explained by “quantizing” the electromagnetic field that led to his receiving the 1921 Nobel Prize
in Physics.

31.4 The Bohr Frequency Relation

Building further on these ideas, Neils Bohr suggested that energy and frequency were related for all
systems through the energy difference relationship

εm − εn = hνmn. (378)

Here εm and εn are the energies of two quantum states m and n, i.e., microstates for some material
system. The quantity νmn is the frequency of radiation emitted by the system when it passes from
energy state m to energy state n.

31.5 The Old Quantum Theory

Embedded in each of these relations is a pair of distinctly quantum-mechanical concepts:

• That there is a direct, fundamental relationship between the energy of a system and the
frequency with which it moves, and

• That the energy states of a system may be quantized, i.e., limited to discrete values.

Together with a somewhat complex framework for determining the correct energy states for real
systems, these hypotheses formed the basis of what became known as the Old Quantum Theory.
In this theory, objects were generally regarded as still moving classically according to Newton’s
equations (at least in a limited sense), only with a limited set of “orbits” available to them. The
most famous example of the use of this Old Quantum Theory was Niels Bohr’s analysis of the
hydrogen atom. Bohr’s explanation of the electronic absorption spectrum of atomic hydrogen was
the first great triumph of quantum theory, and hopes were high for some time afterward that the
Old Quantum Theory would offer a simple, concrete description of all real systems.

Unfortunately, it turned out that the Hydrogen atom was as good as life got for the Old Quantum
Theory. Even the next element on the periodic table – atomic Helium – turned out to be impossible
to describe using the Planck-Bohr-Einstein prescription for energy quantization. A new theory was
needed. And, with it, the equations would get only wilder.

31.6 The Canonical Commutation Relation

The first critical step away from the “Old Quantum Theory” was the recognition by Werner Heisen-
berg, Max Born, and Pascual Jordan that Bohr’s frequency formula [Eq. (378)] appeared naturally
from the classical equations of motion if one interpreted the usual position and momentum variables
x and p not as simple functions but as matrices.

12It’s worth noting, however, that both Newton and Lucretius (among many others) believed light was composed
of particles. It was only relatively recently (the late 1800s) that light had come to be viewed definitively as a wave.
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We don’t have time to go here into the details of matrix algebra, but the key distinction of
interest to us here is that, while matrices can be added, subtracted and multiplied just like numbers
and functions, the multiplication is non-commutative. In simple terms, this means that the left-side
product AB of two matrices A and B is not the same as the right-side product BA. This is very
different from the multiplication of two numbers a and b where we have the commutative relationship
ab = ba.

Specifically, Heisenberg discovered that Bohr’s frequency formula was recovered from the classical
equation of motion (based on Newton’s equations) if one replaced the classical position x and mo-
mentum p = mv with infinite-dimensional matrices x and p that satisfied the canonical commutation
relation

xp− px = i
h

2π
. (379)

In a certain sense, this finding decisively “solved” the problem of quantum theory. If consistently
applied, the Born-Jordan-Heisenberg “matrix mechanics” embodied in this formula turns out to
provide an exact treatment of the quantum-mechanical properties of all material systems. The
problem was that the method was impossibly opaque and extremely difficult to apply in practice to
even simple systems. (It was an extremely difficult achievement to show that it did, in fact, give the
correct fluorescence spectrum for both the Hydrogen and Helium atoms.) Fortunately, other great
minds were at work on the same problem, and a simpler – but also exact – approach was soon to
appear.

31.7 De Broglie’s Wavelength Formula

While Heisenberg was puzzling over matrix products, a young French physicist named Louis de
Broglie was thinking about Bohr’s solution to the hydrogen-atom spectrum from a completely dif-
ferent perspective. Whereas Einstein had pointed out that a logically consistent theory should
“quantize” the electromagnetic field (like the harmonic oscillators it interacts with), de Broglie
began to see that one could achieve similar results by instead “wave-ifying” the matter. Despite
Einstein’s particle-like explanation of the behavior of light in experiments like the photoelectric ef-
fect, many classic experiments made clear that light nonetheless had many wave-like properties. de
Broglie reasoned that if a classical wave phenomenon like light had particle-like properties, then it
was perfectly reasonable that classical particles (like electrons) should also have wavelike properties.

In particular, de Broglie realized that Bohr’s quantization of the hydrogen atom could be obtained
(without any reference to matrices or noncommutative products!) by assuming that the electrons
orbited the hydrogen nucleus as waves with wavelength

λ =
h

p
=

h

mv
(380)

where p = mv is the momentum of the electron. (Here m is the mass of the electron, and v is its
velocity.)

Since de Broglie’s formula predicts that the wavelength of an object is inversely proportional to
its momentum (and therefore its mass), the de Broglie wavelength of macroscopic objects works out
to be vanishingly small. For example, the wavelength of a baseball (roughly 150 grams) traveling at
the modest speed of 40 miles per hour works out to be

λ =
6.626 · 10−34 kg m2/s

40mph · 0.150 kg
· mile

1609m
· 3600 s

hr
≈ 2.5 · 10−34m, (381)

many orders of magnitude below the detection limit of any modern experimental equipment. For
very small objects like electrons, however, the de Broglie wavelength turns out to be significant, on
the order of the the diameter of the atoms binding them.
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The key significance of de Broglie’s observation is that it provided a rationale, however counter-
intuitive, for why quantization should occur: whereas at macroscopic scales, physics is dominated
by either wave-like or particle-like behavior, at the atomic scale a wave-particle duality becomes
visible: particles behave in some ways like waves and in others like particles. Quantization falls out
as a necessary consequence of the periodicity of electronic “particle waves” in regular orbits around
atomic nuclei.

Unfortunately, like the Einstein-Bohr “Old Quantum Theory”, de Broglie’s analysis turned out
not to give a complete solution to the quantum mechanical problem. In particular, it was not at
all obvious how it could be applied to more complex systems like the helium atom in order to give
reasonable agreement with experiment. Fortunately, that development was waiting just around the
corner.

31.8 The Time-Dependent Schrödinger Equation

Inspired by de Broglie’s wave-particle hypothesis, a young Austrian physicist named Erwin Schrödinger
began puzzling over how a general “wave theory” of quantum mechanics might be formulated. How
exactly Schrödinger reasoned through this process is not entirely clear. Certainly he was inspired
by the classical diffusion equation that describes the spread of the probability density for particles
diffusing through a solvent, the ensemble equivalent of the random-walk process we discussed earlier
in the semester. And he was clearly influenced by de Broglie’s formulation of wave-particle duality.

But whatever his reasoning, the ultimate result is that he proposed a formula – now known as
the time-dependent Schrödinger equation

ih

2π

∂ψ

∂t
= Ĥψ (382)

for the time-evolution of a new quantity he called the “wave function” for quantum mechanical
systems.

This equation involves several new features that we haven’t seen before. First, the wavefunction
ψ itself was in Schrödinger’s time a somewhat mysterious object and, to a considerable extent,
remains mysterious to this day. The simplest interpretation of ψ is that, when given as a function
of position x, it represents the probability amplitude for the position of a particle. Mathematically,
this means that

Probability (position ≈ x) = |ψ(x)|2 = ψ∗(x)ψ(x), (383)

i.e., the probability that a particle is at the location x is equal to the squared absolute value of
the wavefunction. (Since the wavefunction is, in general, a complex creature, the squared absolute
value |ψ(x)|2 is obtained by multiplying ψ(x) by its complex conjugate ψ∗(x).) Note that this
interpretation of ψ as a probability density already hints at the probabilistic aspect of modern
quantum mechanics that Schrödinger himself came to dislike so strongly.

The second unfamiliar feature of Schrödinger’s equation is the appearance of the Hamiltonian not
as a classical function H(x, p) but as an operator Ĥ. Schrödinger was familiar with the mathematics
of linear operators from his study of mathematical analysis and differential equations, but his intro-
duction of these ideas to the treatment of quantum mechanics opened an entirely new vista toward
understanding the developing theory. In analysis and quantum mechancs, an operator is a sort of
“function of functions”: Just like a function takes numbers as input and returns other numbers, an
operator takes functions as inputs and returns other funtions. You’re already very familiar with the
differential operator d

dx which takes a function f(x) and returns its derivative f ′(x):

d

dx
f(x) =

df

dx
= f ′(x). (384)
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But in general any method for mapping functions to other functions can be used to define an
operator. In our notes, we’ll always denote such operators by “hats”, e.g., Ĥ is an operator, whereas
H would represent a number or a function.

Schrödinger’s key insight was to propose that each physical observable – i.e., a quantity like
position, momentum, or energy that can be “observed” for a system – should be assigned their
own unique operator. The Schrödinger equation exhibits one such operator Ĥ representing the
Hamiltonian of a quantum system, i.e., its energy. More generally, Schrödinger proposed that the
correct operators for each “observable” could be obtained by using the definitions

x̂ = x (385)

p̂ = −i h
2π

∂

∂x
. (386)

The position operator x̂ thus just corresponds to multiplying by the position variable x, while
the momentum operator corresponds exactly to the differential operator discussed earlier, with the
addition of the imaginary prefactor −i h2π .

31.9 The Time-Independent Schrödinger Equation

If you find Schrödinger’s wave equation to be difficult to wrap your head around, you’re in good
company. The physics community to whom he first presented it also found it hard to understand.
Schrödinger’s next step, however, quickly convinced even the staunchest skeptics of the value of his
approach. Starting from his wave equation, Schrödinger showed that, if quantum mechanics was
to give an experimentally consistent description of system dynamics, then the energy levels for a
system must be determined by the eigenvalues of its Hamiltonian operator. Specifically, Schrödinger
deduced from his time-dependent wave equation [Eq. (382)], that the nth energy value εn of a system
must satisfy what is now known as the time-independent Schrödinger equation:

Ĥψn = εnψn, (387)

where ψn is the nth eigenfunction of the Hamiltonian operator Ĥ and εn is the corresponding eigen-
value. In general, an eigenfunction of an operator is simply a function that (apart from multiplication
by a constant) is “left the same” by application of that operator. Thus if ψn is an eigenfunction of
Ĥ, then, according to Eq. (387) it is “left the same” by the action of Ĥ, apart from being multiplied
by the eigenvalue εn. As Schrödinger knew from his study of differential equations, each operator
comes with its own unique set of eignefunctions and eigenvalues. His theory now proposed that the
possible energy levels of all quantum systems could be calculated by simply finding this unique set
of eigenvalues for the corresponding Hamiltonian operator.

The great advantage of Schrödinger’s formalism is that the mathematics behind it was already
well-developed in the mathematical fields of analysis and differential relations and that it offered
a much more concrete prescription for solving quantum mechanical problems than the infinite-
dimensional matrices of Heisenberg’s matrix mechanics. Equally important, Schrödinger was able
to demonstrate explicitly that the two theories were mathematically equivalent : Heisenberg’s matrix
theory could be derived rigorously from his own “wave mechanics” and (with the benefit of hind-
sight) vice versa. Although there was much still to be understood in the interpretation of these
equations, Schrödinger’s theory provided an essentially complete mathematical framework within
which quantum mechanical problems could be analyzed.

31.10 Where things get weird: The Measurement Postulate

In the early 1900’s, Heisenberg’s matrix mechanics, together with Schrödinger’s more palatable
wave mechanics, gave a remarkably complete description of known experiemental observations. The
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absorption spectra of not only the hydrogen and helium atoms but even small molecules could be
described with exquisite precision. Even the statistics of bizarre new experiments where electrons
apparently interfered with themselves or changed back and forth from wave-like to particle-like
properties were readily derived mathematically. But one problem still remained – and in fact,
still remains with us today: interpreting what quantum mechanics means about the nature of the
universe, when and where particles exist, and what properties they have before a measurement is
made.

It takes a fair bit of mathematics to explain the “strangeness” of quantum theory, but much of
it comes from the last (and most-debated) hypothesis to be added to the theory: the measurement
postulate.

The measurement postulate in quantum mechanics says that when a measurement is made
on a quantum system, its wavefunction collapses instantaneously to match the value of the
property that was just measured. In equations

ψ′ = P̂ψ (388)

where ψ′ is the wavefunction after the measurement, ψ is the wavefunction before the measure-
ment, and P̂ is a projection operator that “filters out” only those parts of ψ that are consistent
with the experimental values just measured.

For the purposes of this course, you don’t need to worry about exactly what a “projection
operator” does or how it works. What you do need to know is that, according to the measurement
postulate, measurements inevitably and instantaneously change the state of quantum systems. The
state ψ′ after the measurement is generally different from the state before the measurement.

To be sure, there are some classical analogs to this behavior. One way to measure exactly how
much weight a rope could hold would be to keep adding very small weights one at a time until the
rope broke. (This is actually very nearly the way many protein force-pulling measurements work!)
This would give you a very precise measurement of the “maximum load” of the rope, but it would
also destroy the rope in the process! The state of the rope is changed by the measurement process.

What’s strange about the quantum measurement postulate is that it claims that the state of a
quantum system is necessarily modified by measurement – regardless of how you do the measurement.
In the rope analogy, you could probably devise other ways to make the measurement that keep your
rope intact (e.g., test an identical rope or even just a single fiber from the rope of interest). But
the measurement postulate says that it’s impossible to devise a measurement method that doesn’t
perturb the system. Intuitively, this can be understood as a result of “quantization”: becuase
energy in quantum systems comes in discrete packets (like a photon), there’s always some minimum
perturbation to a system when you make a measurement on it. Classically, energy can come in
infinitely small quantities (because it’s continuous), so you can always imagine carrying out the
measurement in such a way that the system is left effectively unperturbed. Quantization means that
you can’t do this for quantum systems: some amount of perturbation is inevitable.

31.11 The Uncertainty Principle

The measurement postulate might not sound like that big of a deal. So what if a system gets per-
turbed by measurement? In the real world, this is usually true anyway (even in classical mechanics),
so what does it matter if it’s always true in quantum mechanics?

As it turns out, it matters a great deal. One of the most immediate consequences is what is
now known as Heisenberg’s uncertainty principle. Heisenberg realized early on in his development of
matrix mechanics that, because of the canonical commutation relation xp−px = i h2π , a given system
can have precisely defined values of either x or p, but never both at the same time. Mathematically,
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this is stated as

σxσp ≥
h

4π
, (389)

where σx represents the uncertainty (i.e., standard deviation) of the position x, σp represents the
uncertainty in the momentum p, and h is our old friend Planck’s constant. Intuitively, this relation-
ship says: There is a limit to how precisely we can know both the position and the momentum of a
quantum system simultaneously; if we can predict the outcome of an x-measurement precisely (σx
is small), the we must not be able to predict the outcome of p measurements precisely (σp is large);
conversely, if we can predict the outcome of a p-measurement precisely (σp is small), the we must
not be able to predict the outcome of x measurements precisely (σx is large).

What does this have to do with the measurement postulate? Well, initially it was hoped that one
could overcome the uncertainty principle by making successive measurements: if we first measure
x precisely and then measure p precisely, we’ll know both of them to any precision we desire!
Unfortunately, this scheme turns out not to work. As a result of the measurement postulate, it turns
out that any measurement of x completely “scrambles” any knowledge of p; and any measurement
of p “scrambles” our knowledge of x. As a result, successive measurements don’t actually buy us
anything: we can measure x first and then p, but once we measure p our previous measurement
of x isn’t valid any more – the particle is so perturbed by the measurement of its momentum that
it’s position will have changed completely (and unpredictably) by the time the p measurement is
finished!
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32 Quantum Mechanics: Fact or Fiction?

32.1 Introduction to Quantum Mechanics

The last few lectures have introduced us to the final and probably least-understood topic in our
survey course: Quantum Mechanics. At a fundamental level, quantum mechanics is the field of
physics that governs material systems at very small energy and length scales. When we’re dealing
with atoms (or sub-atomic particles), quantum mechanics is the only game in town. But, because
everything is ultimately made of a very large number of very small particles, the rules of quantum
mechanics ultimately govern all material systems, from diode lasers to the human body.

Unfortunately, because complex systems (such as individual cells, let alone higher organisms)
involve so many different particles, we usually can’t trace out all the ways that quantum mechanics
manifests itself in real life. And in the short time we have left int his course, we won’t have time
even to give an in-depth treatment of the basic rules of quantum mechanics (a course in itself), let
alone describing how those rules play out in living systems.

Instead, we’ll offer a “birds-eye view” of what’s so distinctive about quantum mechanics and
how some of those distinctive characteristics play out in biological systems. Today we’ll start off
with a “fact or fiction” series dealing with some of the common conceptions and misconceptions
surrounding quantum theory.

32.2 Quantum Mechanics is really hard.

Fact or Fiction? A bit of both:

• Quantum mechanics is hard at the beginning, because both the mathematical tools and the
philosophical concepts involved are very different from what most of us encounter in daily
life. As a result, quantum concepts are likely to feel abstract or exotic to newcomers, and the
techniques are likely to feel awkward and difficult. This is explained nicely by an xkcd comic:
https://explainxkcd.com/wiki/index.php/1861:_Quantum.

• But quantum mechanics gets easier fast. On the other hand, quantum mechanics gets easier
much faster than many other technical subjects. Once you’ve got the core concepts and tools
in place, you can cover a great deal of “ground” very quickly. In fact, there are quite a few
problems in physics that are relatively easy to solve in quantum mechanics but very difficult
in classical mechanics. This situation again varies dramatically from other physical fields like
relativity or Newtonian dynamics. In both cases, a fairly simple set of equations is needed to
get started in the subject, but the mathematical complexity balloons dramatically as you ask
more difficult questions. Quantum mechanics is just the opposite: The initial required effort
is rather large, but this “buys” results for a fairly large number of interesting problems.

32.3 Quantum Mechanics proves that life is random.

Fact or Fiction? Fiction.

One of the most frustrating aspects of quantum mechanics is that – although the equations work
beautifully – it’s fundamentally unclear how the theory should be interpreted, i.e., what it is exactly
that those equations tell us about how the universe actually is or what even really exists.

The traditional description of quantum theory (the Copenhagen interpretation) says that quan-
tum mechanics indicates a fundamental “randomness” to the universe. Heisenberg’s famous un-
certainty principle – which states that certain quantities (e.g., position and momentum) can never
simultaneously be known with certainty – is perhaps the most commonly cited “proof” for this idea.

However, there are actually several different ways to interpret both the basic philosophy of quan-
tum mechanics and, in particular, the uncertainty embedded in Heisenberg’s principle. The most
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extreme opposite of the Copenhagen Interpretation is that of absolute determinism or Superdeter-
minism which suggests that all events in both the past and future are determined ahead of time –
including the conscious choices that human beings make apparently of their own free will.

The take-home point is that the rules of quantum mechanics do point to a variety of uncertainty
that is not present in classical physics, but whether or not this uncertainty reflects a fundamental
“randomness” in the universe remains a philosophical question – much as it did before the advent
of quantum theory. Compare, for example, the arguments of Lucretius (c. 99 BC to c. 55 BC)
on atomic motion and free will [http://gutenberg.org/files/785/785-h/785-h.htm, Book II,
“Atomic Motions”]:

The atoms, as their own weight bears them down

Plumb through the void, at scarce determined times,

In scarce determined places, from their course

Decline a little – call it, so to speak,

Mere changed trend. For were it not their wont

Thuswise to swerve, down would they fall, each one,

Like drops of rain, through the unbottomed void;

And then collisions ne’er could be nor blows

Among the primal elements; and thus

Nature would never have created aught.

(The underlining is mine.) Compare this with the perspective of Erwin Schrödinger (one of the
founders of quantum theory):

If we are going to stick to this damned quantum-jumping, then I regret that I ever had
anything to do with quantum theory.

The point is that the choice of whether to embrace “randomness” as a fundamental characteristic
of the universe has much less to do with the math than with philosophical predisposition.

32.4 Quantum Mechanics proves that there are an infinite number of
parallel universes.

Fact or Fiction? Fiction.

However, while quantum mechanics doesn’t prove anything about other universes, a variety of
multi-universe theories have been proposed to resolve (in a certain sense) some of the interpretation
problems that quantum mechanics otherwise leaves unresolved. The most famous is the Many-
Worlds interpretation, proposed originally by Hugh Everett, which posits that each time a random
event occurs in quantum mechanics the universe splits itself into two or more parallel tracks one
corresponding to each possible outcome from the random event. Whether such “multiverse” theories
actually improve the situation or not is something of an open (and mostly philosophical) question
since no experiments have so far been proposed that could actually test them. While, depending on
your perspective, quantum mechanics may indeed suggest a particular idea, there are very few cases
in which the scientifically testable facets of quantum theory can really be said to “prove” something
– outside of the rather technical scope of quantum mechanics itself.
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32.5 Quantum Mechanics proves X about Y , where Y is a topic in phi-
losophy, religion, art, etc.

Fact or Fiction? Almost always fiction.

As you’re probably realizing by this point, quantum mechanics poses a rich array of conundrums,
some of which are very much related to traditional philosophical and religious questions like free
will and determinism. Combine this with the fact that very few people understand the math behind
quantum theory in detail, and it can be very hard to resist the temptation to use it to defend
or “prove” one philosophical perspective or another. Keep in mind, however, that most of these
“proofs” depend on one particular interpretation of quantum theory (Copenhagen and many-worlds
are probably the most popular)

32.6 Schrödinger’s cat is both alive and dead.

Fact or Fiction? Depends on who you ask.

Along with his scientific and philosophical ally Albert Einstein, Erwin Schrödinger had a knack
for putting a fine point on the conceptual difficulties associated with the quantum theory he helped
to formulate. Few concepts in quantum theory are now as famous as his (purely hypothetical!) “cat
experiment” in which a live cat is placed in a box equipped with a “diabolical device” that may
or may not kill the cat, depending on the outcome of a measurement that – according to the rules
of quantum mechanics – has a 50/50 chance of resulting in life or death for the cat. The point
that Schrödinger wanted to make is that, if the rules of quantum mechanics are followed, one is
led to the surprising conclusion that the cat is neither alive nor dead until the box is opened by
a (presumably human) outside observer. Although not explicitly stated, Schrödinger appears to
regard this situation as essentially nonsensical, and played a considerable role in his own distaste
for the standard (Copenhagan) interpretation of quantum theory (that “damned quantum-jumping”
again). Thus Schrödinger’s own view seemed to be that the possibility of a cat being both dead and
alive was obviously unreasonable.

In spite of such vigorous complaints from Schrödinger and Einstein, however, the Copenhagen
interpretation was vigorously defended by Bohr and Heisenberg, who seemed to regard hesitation
in embracing the “new quantum theory” as something of a philosophical weakness. Though they
often disputed the details and philosophical implications of Schrödinger’s and Einstein’s arguments,
they did not shy away from acknowledging that the theory was radical and could, ultimately, lead
to bizarre outcomes like dead/alive cats.

On the other hand, the entire debate was viewed with some impatience by others on the scene,
particularly Paul Dirac who regarded the whole thing as something of a waste of time. In Dirac’s
view, quantum mechanics had better-defined (more mathematically precise) problems that should
be dealt with first. The philosophy could be understood later. This is perhaps the perspective that
has become most widely adopted among physicists today, although the temptation to raise eyebrows
by introducing undead cats into casual conversation or research headlines can be almost irresistible
at times.

So, in abbreviated form, three answers to the “dead-and-alive cat” proposition:

• Bohr and Heisenberg: Fact!

• Schroödinger and Einstein: Fiction!

• Dirac: Can we focus on something important?
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32.7 Einstein was wrong about Quantum Mechanics.

Fact or Fiction? A little of both:

• Einstein was right about the quantum behavior of light (think “photons”): he even got a
Nobel prize for it. (Rather astonishingly, he never did get a Nobel prize for his formulation of
the theory of relativity.)

• Einstein was right that quantum mechanics implied bizarre behavior (“spooky action at a
distance”) in experiments involving “entangled” particles. Apart from Schrödinger, nobody
else seemed much to care about this at the time.

• Einstein was wrong in guessing that the predicted bizarre behavior wouldn’t happen in the
real world. Experiments showed only decades after his death that the experiments really are
bizarre!

• Einstein’s obsession with this bizarre behavior led after his death to the development of fields
like quantum computing and quantum cryptography.

In short, although his “guess” about the experiment turned out to be wrong, his intuition about
where the physics got interesting was exactly right and resulted in a completely new field of science
and technology. If you count this as being “wrong”, it’s a great way to be wrong!

32.8 E = mc2

Fact or Fiction? Fact. But wrong field – this equation belongs to Einstein’s theory of relativity,
though it’s often confused with quantum mechanics.

32.9 Quantum Mechanics contradicts Relativity.

Fact or Fiction? Fact.

One of Einstein’s chief complaints against quantum theory was that it (in a certain sense) con-
tradicted his own theory of relativity. Most of the specific problems he proposed turned out to be
solvable without major changes to quantum theory itself, but even today inconsistencies between
the two theories reveal themselves in extreme cases. Relativity can be thought of as the physics
of very large systems, while quantum mechanics describes very small ones. Interpolating between
those two results turns out to be problematic, and physicists are still looking for the “unified field
theory” that will bring them together – and perhaps resolve some of the philosophical conundrums
raised by the two theories individually.
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33 Quantum Mechanics in Biology

After all this discussion of quantum mechanics, you may be left wondering: What does all this have
to do with biology or the life sciences?

It’s a reasonable question. Overt “quantum effects” – like entanglement and tunneling – are
usually visible only at the microscopic scale. The wet, complicated, noisy environment of most
living cells obscures most of these effects to the point that they aren’t recognizable any longer as
something fundamentally quantum.

That’s not to say, though, that quantum mechanics doesn’t have important implications for
biology. Today we’ll look at a smattering of these, ranging from familiar and clear-cut examples like
molecular bonding to the more obscure and tenuous such as proposals of “quantum consciousness”.

33.1 The UV Catastrophe, Molecular bonding, and the Genetic Code

We’ve already covered one key result of quantum theory that’s very much relevant to biology: The
avoidance of the ultraviolet (UV) catastrophe. The classical blackbody radiation formula
[Eq. (352)] predicts that hot objects like the sun should produce vast quantities of radiation in the
x-ray, gamma-ray and even higher-frequency portions of the spectrum. As you might imagine, this
wouldn’t be a healthy situation for life on earth!

But, more fundamentally, the same “quantization” of molecular energy states that averts the
UV catastrophe also plays a fundamental role in building up material systems at the atomic and
molecular level. In a classical atom, electrons would orbit closer and closer to the nucleus, gradually
losing all of their orbital energy as radiation in a continuous “death spiral” into the nucleus. It is
only the quantization of electronic energies that forbids this behavior in quantum mechanics. Thus,
at a foundational level, quantum mechanics is relevant to biology in the sense that it forms the basis
for atomic stability and the molecular bonding that produces the water, proteins, nucleic
acids, and carbohydrates that form the building blocks for life.

The significance of quantization is particularly apparent in the context of nucleic acids and the
genetic code. As Erwin Schrödinger pointed out in his book What Is Life? – a mix of exploratory
science and personal philosophy – the ability of organisms to store and transmit genetic infor-
mation is dramatically aided by the fact that chemical bonds can be used to produce a discrete
chemical code for the storage of information. Imagine if adenine and thymine weren’t discrete chem-
ical units – as they appear in DNA sequences – but could be continuously changed from one to the
other. (This is indeed exactly what might be expected from a classical system in which electrons and
atoms exist not in a limited set of quantized states but in a continuous range of classical configura-
tions.) Such an arrangement would hopelessly complicate the storage of the information essential to
biological replication and reproduction, or even to the consistent functioning of a individual protein
or organism.

Most of the quantum effects just described involve processes that are fundamental to almost
all processes in the physical world, not only biology. But the biological world has produced more
distinctive quantum mechanical effects as well. The next three examples we’ll consider fall into this
categorie. Keep in mind, however, that the physics of life processes are often incompletely under-
stood. The examples we’ll consider range from well established (the photosynthetic energy funnel)
to highly speculative (a hypothesized relationship between consciousness and quantum collapse).

33.2 The Photosynthetic Energy Funnel

One quantum-mechanical effect that’s rather well-established the existence of the photosynthetic
energy funnel : the spatial organization of photosynthetic light-harvesting proteins in a way that
rapidly “funnels” solar excitation energy from a broad array of antenna proteins into the “reaction
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center” where photochemistry takes place. The illustration below shows one example, the Photosys-
tem II lightharvesting supercomplex of green plants; in this system, pigments that absorb at short
wavelengths (high frequency) such as carotenoids and Chlorophyll b molecules are situated far from
the reaction center, while pigments that absorb at long wavelengths (low frequency) comprise the
reaction center and its immediate environment.

If light-harvesting operated classically in this system, energy would diffuse through the complex
in an unbiased “random walk” from complex to complex, seeking the even distribution of energy
mandated by the classical equipartion principle. Because of the quantum-mechanical correlation
between energy and frequency, however, energy absorbed by high-frequency pigments moves prefer-
entially toward lower-energy sites, moving steadily from the periphery of the complex to the reaction
center at the core where it can be converted to useful chemical energy. Thus violation of the classical
equipartition principle is leveraged to increase the efficiency of energy transfer from protein
to protein toward the photochemical reaction center.

Right-hand image from: https:
//thebiologs.blogspot.com/2014/09/cape-2-photosynthesis-structure-of-leaf.html

This well-established phenomenon in photosynthetic light harvesting should be distinguished
from a variety of more recent claims regarding the role that might or might not be played by “quan-
tum coherence” in photosynthetic function. (For a recent discussion see: https://physicsworld.

com/a/is-photosynthesis-quantum-ish/.) These claims originated around 15 years ago in re-
sponse to the result of new experiments using ultrafast (laser-based) spectroscopic experiments.
Early interpretations of the data suggested that exotic quantum effects like entanglement might
play a role in enhancing light-harvesting efficiency, but these ideas have been hotly debated and in
some cases definitely debunked. Final answers are still a topic of current research.

33.3 Magnetoreception

Another phenomenon in which quantum mechanics is widely believed to be involved is the functioning
of the “avian compass”, specifically the ability of birds (and some other organisms) to navigate by
magnetoreception the detection of the earth’s magnetic field. Many migratory birds appear to use the
earth’s magnetic field as an internal compass during long flights and become confused and disoriented
when placed inside of cages with changing magnetic fields. The mechanism by which this “magnetic
sensing” occurs, however, is essentially unknown. Several possibilities have been suggested, ranging
from light-active proteins in the bird’s eyes to iron-containing particles in their beaks.
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Although a complete understanding of the phenomenon must clearly wait for better biochemical
data, the physical basis almost certainly involves in some form the response of unpaired electrons
to the earth’s magnetic field. At some level, this process clearly involves quantum-mechanical
phenomena since the quantization of electron spin is itself a quantum-mechanical effect. Whether
this spin quantization (which is the basis for even non-biological compasses) is the only quantum
effect at work in this process or if there are more exotic forces at work is a topic of considerable
debate. What is clear is that avian magnetoreception is an exciting open field of research!

Image from:

33.4 Quantum Consciousness?

We’ll close with a highly speculative proposal regarding the origins of consciousness in biological
creatures such as human beings. This particular example is offered only to illustrate the range of
ideas at play in the intersection between quantum mechanics and biology; it is not in any way
intended as a personal endorsement of the idea. (In fact, I personally find the idea highly unlikely.)

The idea of a quantum-mechanical basis for human consciousness was popularized most emphat-
ically by Roger Penrose, a British physicist and Nobel laureate who in his later career turned to
thinking about biological problems. Based on abstract mathematical arguments involving Gödel’s
Incompleteness Theorems, Penrose suggested that any instrument capable of carrying out the neu-
ral processes common to the human brain must at some level rely on quantum-mechanical effects.
An American researcher named Stuart Hameroff subsequently proposed to Penrose that cellular
microtubules might be the physical origin of such a process, and the two of them together for-
mulated a theory of “orchestrated objective reduction” that purports to describe how the collapse
of quantum-mechanical wavefunction collapse in neuronal microtubular structures gives rise to hu-
man consciousness and decision-making. (For a more extensive discussion and references see here:
https://en.wikipedia.org/wiki/Orchestrated_objective_reduction.)
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34 Quantum Technologies

34.1 What’s the big deal?

You’ve probably heard recently about one or more “quantum technologies” like quantum comput-
ing, quantum cryptography, or quantum sensing. Indeed, in the fall of 2019, Google announced to
much fanfare that their quantum computing team had achieved “quantum supremacy” – a point
where quantum computing can accomplish tasks that are beyond the power of any classical com-
puter. (See https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.

html). Others have been more skeptical of Google’s announcement (see here for IBM’s response:
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/). Nonetheless, the ques-
tion remains: Why all the excitement about these “emerging” technologies, and what makes them
“quantum”?

The name “quantum technology” serves as an umbrella term for a wide range of different de-
vices, and it doesn’t come with a single, precise, universally accepted definition. Indeed, as we’ve
already seen, quantum mechanics is fundamentally at work in just about every technology you could
imagine, since at the atomic scale the properties of all materials are governed by quantum mechan-
ical principles. However, most devices commonly referred to as “quantum technologies” do share
something in common: a reliance on the quantum mechanical phenomenon of entanglement. Thus
we’ll begin our discussion of quantum technologies with a brief look at entanglement itself.

34.2 Quantum Entanglement

The word “entanglement” was first used by Erwin Schrödinger to describe what he viewed as a deeply
disturbing feature of quantum theory: the idea that (according to quantum mechanics) the physical
state of two particles that had at any point in the past interacted with each other would continue
to be defined by a single wavefunction – regardless of whether the particles continued to interact
with each other or not. According to quantum mechanics, a two-particle system is described by a
single wavefunction ψ(x1, y1, z1, x2, y2, z2), where the coordinates x1, y1 and z1 represent the first
particle, and the coordinates x1, y2, and z2 represent the second particle. At face value, this seems
very similar to the situation in classical mechanics where (for example) we might use a probability
density function to describe our knowledge about two classical particles, even if they weren’t spatially
close to each other.

What bothered Schrödinger about the situation in quantum mechanics is that – according to
our old friend the Measurement Postulate – any measurement made on one of the two particles
would instantaneously change the state of the other particle. Recall that the measurement postulate
asserts that any measurement made on a quantum system necessarily perturbs the system; in the
case of two entangled particles, this means that the state of particle #2 is necessarily disturbed
when a measurement is made on particle #1 – regardless of how far apart the two particles are or
whether or not they continue to interact with each other. Even worse, the Copenhagen interpretation
of quantum mechanics indicates that the state of particle #2 changes instantaneously in response
to measurements on particle #1. This apparent contradiction of the Theory of Relativity (which
asserts that no signal can travel faster than the speed of light) was the feature that Einstein found
most deeply troubling about the entire framework of quantum theory and that led him to reject the
Copenhagen interpretation.

This entanglement “phenomenon” is illustrated schematically in the figure below. Two parti-
cles (red and blue) are initially close to each other in space and interact, causing their collective
wavefunction ψ to become “entangled”. Later, the particles are sent to different places where they
no longer interact. Nevertheless, because the wavefunction is entangled, the act of measurement
on the red particle instantaneously affects the state of the blue particle. Any subsequent measure-
ments on the blue particle will reflect the new post-measurement wavefunction ψ′ instead of the
pre-measurement wavefunction ψ.
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34.3 Quantum Computing

For many years, quantum entanglement was viewed as a purely abstract thought-experiment that
didn’t have much relevance to the real world. Indeed, it wasn’t clear whether, if such measurements
could actually be made, they would follow the rules that quantum mechanics predicted. It wasn’t
until after the deaths of both Schrödinger and Einstein that a British Physicist named John Stewart
Bell outlined an experiment (and proved a related theorem) for how such measurements might
actually be made. And it wasn’t until some years after these experiments were actually done –
confirming, contrary to Einstein’s expectations, that entangled particles really do carry “spooky”
correlations – that people begin to realize that these strange quantum mechanical effects might have
some useful applications.

Probably the most famous (though still mostly hypothetical) application is quantum computing.
Quantum computing takes advantage of the fact that a quantum particle can exist in a superposition
of two or more states – just like Schrödinger’s cat can be (in the Copenhagen view) both alive and
dead at the same time. In classical computers, information is stored in a series of “bits”: electronic
markers that can take on the values 1 and 0. A 3-digit binary number on a classical computer could
have the values

000 or 001 or 011 or 101 or 110 or 111 .

At first glance, information storage in quantum computers works similarly: data is stored in
“qubits” (quantum bits) that can take likewise on the values 1 or 0. For example, a qubit could
correspond physically to a C=O stretch vibration, with “0” corresponding to the vibrational ground
state and “1” corresponding to the first excited state. What makes quantum computing different
(and, potentially, more powerful) than classical computing is that qubits can exist as a superposition
of all possible states at the same time. Thus, the 3-digit qubit on a quantum computer could have
the values

000 and 001 and 011 and 101 and 110 and 111

all at the same time! Now, suppose that the two computers were asked to do a minimization

137



problem over these three-digit numbers. Because the bits in the classical computer can take on
only one value at a time, the classical computer would need to check each of the 6 numbers in
sequence. In contrast, because the qubits can take on multiple values simultaneously, a cleverly-
designed quantum-computing algorithm could do the calculation on all six numbers at the same
time, a six-fold speed-up relative to the classical case.

For such simple calculations, the quantum vs. classical speedup is rather modest. But what
if the calculation were on a 100-digit number? A 100-digit binary number has approximately 1030

possible values. If a quantum computer could really do 1030 calculations in parallel, the speedup
compared to the corresponding classical calculation would be astronomical!

This discussion is, of course, rather simplistic. For one thing, it’s not at all obvious how to
implement most practical calculations on a quantum computer in a way that leverages these potential
advantages. For this reason, there’s great interest right now in developing quantum algorithms that
maximize the advantage offered by quantum computing, with the goal of solving problems that
simply couldn’t be solved using classical computers. This is what’s meant by “quantum supremacy”
– the idea that quantum computers can do things that classical computers fundamentally cannot.

The other reason why quantum computing hasn’t yet changed our lives is that quantum comput-
ers simply don’t exist yet – at least not on a scale needed to solve most practical problems. At the
time of writing this text (Spring 2022), the biggest quantum computers available work with on the
order of 100 qubits. This is big enough to do some interesting demonstrations, but not big enough
to change the world. (For comparison, a classical computer like your laptop with 8 Gb RAM works
with around 1010 bits.) Nonetheless, progress has ramped up dramatically over the last few years,
and there’s a strong expectation that we’ll see real-world applications of quantum computing in the
next decade.

34.4 Quantum Cryptography

So what will we do with quantum computers once we have them? Ironically, the most obvious
application available appears to be to destroy internet security. One of the few robust quantum
algorithms that has an immense computational advantage over its classical competitors is Shor’s
algorithm for factoring large numbers. This may seem innocent enough. (What could be so mali-
cious about breaking down a number into its prime factors?) But it has a rather surprising dark
side: precisely because factorizing large numbers is very difficult on a classical computer, it has
for decades served as the basis for most internet security protocols. A quantum computer capable
of factoring large numbers millions of times faster than a classical computer could quickly break
through the standard data encryption methods that protect both your personal credit card number
and government military secrets alike.

A schematic glimpse at how this works is provided in frame (a) of the figure below. Suppose
Bob wants to send Alice a secret message. There are many standard cryptographic ciphers that Bob
could use to encrypt his message (e.g., “padding” the message with irrelevant data to obscure the
real content). But all these ciphers require the receiver of the message to have advance knowledge
of a key that is used “unlock” the message, i.e., a way to filter out the nonsense information and
restore the message to its original form. The challenge of getting the encryption key securely from
sender to receiver is known as the key distribution problem.

Current key distribution protocols work something like this: The receiver (Alice) first does a
very complicated calculation on her local computer. She then sends part of the results from that
calculation – the “public key” to Bob. On Bob’s local computer, he does a second calculation
that uses the public key to “encrypt” his message; this encryption is very hard to reverse, without
knowledge of the other half of Alice’s original calculation, what’s known as the private key. Even Bob
can’t decrypt the message once it’s been encrypted! Only when Bob sends the encrypted message
to Alice can she use her private key to descrypt and read the message.

Now, the “complicated calculation” that Alice did at the start of this process typically involves
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(a) Classical key distribution. (b) Quantum key distribution.

multiplying two large, randomly selected prime numbers. The reason the decryption is difficult to
reverse is that (if you only know the public key) it’s very difficult to guess which two prime numbers
Alice started with. The danger posed by quantum computing to this system is that, using Shor’s
algorithm, a quantum computer could quickly factor the public key, determine the original prime
numbers, recalculate Alice’s private key, and then decrypt and read any messages Bob sends to
Alice. With this in mind, it’s not difficult to imagine that a malicious hacker armed with a working
quantum computer could very quickly wreak havoc on our modern financial system!

Partly for this reason, interest has been ramping up recently in the idea of quantum key dis-
tribution – a solution to the key distribution problem that uses quantum entanglement and the
measurement postulate to determine whether or not a communication line is secure. The basic idea
behind this scheme is illustrated in frame (b) of the figure above. Briefly, Alice sends Bob a sequence
of qubits, quantum particles in one of several possible states. Bob then makes a measurement on
each particle, choosing randomly which measurements to make. Alice and Bob then choose a subset
of the qubits for comparison. If Bob’s measurement results match Alice’s expectations, all is well,
and the rest of the measurement results can be used as a shared random key that both Bob and
Alice know and can use for encryption. The beauty of the scheme comes from the fact that if anyone
else (say an “eavesdropper” named Eve) tried to monitor the original stream of qubits between Alice
and Bob, she would (according to the measurement postulate) necessarily disrupt the corresponding
quantum states. Alice and Bob would then be alerted of the interference when they compared Bob’s
measurement results with Alice’s expectations.
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