Mike Reppert

October 30, 2020

Mike Reppert

Diagrammatic Expansions 1 / 33

October 30, 2020 1

We developed a *microscopic expression* for the n^{th} -order response function:

$$\begin{split} R^{(n)}_{\alpha_1...\alpha_n\alpha}(\tau_1,...,\tau_n) &= \Theta(\tau_1)\Theta(\tau_2)...\Theta(\tau_n) \left(\frac{i}{\hbar}\right)^n \\ &\times \operatorname{Tr}\left\{\hat{\mu}^{(I)}_{\alpha}(\tau_1+...+\tau_n) \left[\hat{\mu}^{(I)}_{\alpha_n}(\tau_1+...+\tau_{n-1}),...\left[\hat{\mu}^{(I)}_{\alpha_1}(0),\hat{\rho}_{\mathsf{eq}}\right]\right]\right\} \end{split}$$

and studied its properties in the n = 1 case.

We developed a *microscopic expression* for the n^{th} -order response function:

$$\begin{split} R^{(n)}_{\alpha_1...\alpha_n\alpha}(\tau_1,...,\tau_n) &= \Theta(\tau_1)\Theta(\tau_2)...\Theta(\tau_n) \left(\frac{i}{\hbar}\right)^n \\ &\times \operatorname{Tr}\left\{\hat{\mu}^{(I)}_{\alpha}(\tau_1+...+\tau_n) \left[\hat{\mu}^{(I)}_{\alpha_n}(\tau_1+...+\tau_{n-1}),...\left[\hat{\mu}^{(I)}_{\alpha_1}(0),\hat{\rho}_{\mathsf{eq}}\right]\right]\right\} \end{split}$$

and studied its properties in the n = 1 case.

Today: Diagrammatic expansions

We developed a *microscopic expression* for the n^{th} -order response function:

$$\begin{split} R^{(n)}_{\alpha_1...\alpha_n\alpha}(\tau_1,...,\tau_n) &= \Theta(\tau_1)\Theta(\tau_2)...\Theta(\tau_n) \left(\frac{i}{\hbar}\right)^n \\ &\times \operatorname{Tr}\left\{\hat{\mu}^{(I)}_{\alpha}(\tau_1+...+\tau_n) \left[\hat{\mu}^{(I)}_{\alpha_n}(\tau_1+...+\tau_{n-1}),...\left[\hat{\mu}^{(I)}_{\alpha_1}(0),\hat{\rho}_{\mathsf{eq}}\right]\right]\right\} \end{split}$$

and studied its properties in the n = 1 case.

Today: Diagrammatic expansions I.e., how to calculate nonlinear response functions without losing your mind.

Q: What is a diagrammatic expansion?

э

Q: What is a diagrammatic expansion?

A: A one-to-one mapping between a particular set of mathematical expressions and symbolic diagrams

Mike Reppert

Q: What is a diagram- **Q:** Why do we use them? matic expansion?

A: A one-to-one mapping between a particular set of mathematical expressions and symbolic diagrams

Mike Reppert

Q: What is a diagram- **Q:** Why do we use them? matic expansion?

A: A one-to-one mapping between a particular set of mathematical expressions and symbolic diagrams

A: Because humans are better at reading pictures than mathematical expressions.

Q: What is a diagram- **Q:** Why do we use them? matic expansion?

A: A one-to-one mapping between a particular set of mathematical expressions and symbolic diagrams

A: Because humans are better at reading pictures than mathematical expressions.

Nested Commutators

Let's start with some explicit examples of the *mathematical expressions* needed for response theory. **Single Commutator:**

$$\left[\hat{\mu}_{\alpha_{1}}^{(I)}(0),\hat{\rho}_{\mathsf{eq}}\right] = \hat{\mu}_{\alpha_{1}}^{(I)}(0)\hat{\rho}_{\mathsf{eq}} - \hat{\rho}_{\mathsf{eq}}\hat{\mu}_{\alpha_{1}}^{(I)}(0)$$

Double Commutator:

$$\begin{split} \left[\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}), \left[\hat{\mu}_{\alpha_{1}}^{(I)}(0), \hat{\rho}_{\text{eq}} \right] \right] &= \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \hat{\mu}_{\alpha_{1}}^{(I)}(0) \hat{\rho}_{\text{eq}} \\ &- \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \hat{\rho}_{\text{eq}} \hat{\mu}_{\alpha_{1}}^{(I)}(0) \\ &- \hat{\mu}_{\alpha_{1}}^{(I)}(0) \hat{\rho}_{\text{eq}} \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \\ &+ \hat{\rho}_{\text{eq}} \hat{\mu}_{\alpha_{1}}^{(I)}(0) \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \end{split}$$

Examples

Triple Commutator:

$$\begin{split} & \left[\hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2), \left[\hat{\mu}_{\alpha_2}^{(I)}(\tau_1), \left[\hat{\mu}_{\alpha_1}^{(I)}(0), \hat{\rho}_{eq} \right] \right] \right] \\ &= \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\rho}_{eq} \\ &- \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\rho}_{eq} \hat{\mu}_{\alpha_1}^{(I)}(0) \\ &- \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\rho}_{eq} \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \\ &+ \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \hat{\rho}_{eq} \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \\ &- \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\rho}_{eq} \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \\ &+ \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \hat{\rho}_{eq} \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \\ &+ \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\rho}_{eq} \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \\ &- \hat{\rho}_{eq} \hat{\mu}_{\alpha_1}^{(I)}(0) \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \end{split}$$

Notice:

- Each $\hat{\mu}_{\alpha_n}^{(I)}(\tau_1 + ... + \tau_{n-1})$ appears once
- Index n increases with distance from $\hat{\rho}_{\rm eq}$
- Even # of terms to right of $\hat{\rho}_{\rm eq} \Rightarrow$ positive sign
- Odd # of terms to right of $\hat{\rho}_{eq} \Rightarrow$ negative sign

Diagrammatic Representation

Diagrammatic Representation

Diagrammatic Representation

Commutator Diagram Rules

To generate the n^{th} -order commutator:

• Draw 2^n "ladders", with n rungs each.

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{
 ho}$ to the bottom of the ladder

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{\rho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{\rho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.
- Write down the corresponding commutator term:

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{
 ho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.
- Write down the corresponding commutator term:
 - Start with $\hat{\rho}$ at the center

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{
 ho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.
- Write down the corresponding commutator term:
 - Start with $\hat{\rho}$ at the center
 - Add all left-side dipoles to the left of $\hat{\rho},$ ordered right-to-left according to ordering up the ladder

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{
 ho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.
- Write down the corresponding commutator term:
 - Start with $\hat{\rho}$ at the center
 - Add all left-side dipoles to the left of $\hat{\rho},$ ordered right-to-left according to ordering up the ladder
 - Add all right-side dipoles to the right of $\hat{\rho},$ ordered left-to-right according to ordering up the ladder

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{
 ho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.
- Write down the corresponding commutator term:
 - Start with $\hat{\rho}$ at the center
 - Add all left-side dipoles to the left of $\hat{\rho},$ ordered right-to-left according to ordering up the ladder
 - Add all right-side dipoles to the right of $\hat{\rho},$ ordered left-to-right according to ordering up the ladder
 - Add a "+" to terms with an *even* number of right-side interactions

Commutator Diagram Rules

- Draw 2^n "ladders", with n rungs each.
- On each rung, mark an "interaction" on either right or left
 - Start with all interactions on left
 - On the $n^{\rm th}$ rung from the top, alternate left vs. right every 2^{n-1} diagrams
- Add the density matrix $\hat{
 ho}$ to the bottom of the ladder
- Add interaction dipoles $\hat{\mu}_{\alpha_n}^{(I)}$ at the n^{th} rung from the bottom, on the side of the interaction.
- Write down the corresponding commutator term:
 - Start with $\hat{\rho}$ at the center
 - Add all left-side dipoles to the left of $\hat{\rho},$ ordered right-to-left according to ordering up the ladder
 - Add all right-side dipoles to the right of $\hat{\rho},$ ordered left-to-right according to ordering up the ladder
 - Add a "+" to terms with an *even* number of right-side interactions
 - Add a "-" to terms with an *odd* number of right-side interactions

Diagrams for Eigenstate Expansions

To interpret response functions microscopically, we need to expand in the system eigenstates.

Let the indices a, b, c, d, \dots represent eigenstates of the *molecular* Hamiltonian:

• Noting that $\hat{\rho}_{\rm eq}$ is diagonal, substitute $\hat{\rho}_{\rm eq} = \sum_a |a\rangle \, \rho_{aa}^{(\rm eq)} \, \langle a|$

10/33

To interpret response functions microscopically, we need to expand in the system eigenstates.

Let the indices a, b, c, d, \dots represent eigenstates of the *molecular* Hamiltonian:

- Noting that $\hat{\rho}_{eq}$ is diagonal, substitute $\hat{\rho}_{eq} = \sum_{a} |a\rangle \rho_{aa}^{(eq)} \langle a|$ (1)
- Insert the identity $\hat{1}=\sum_{b}\left|b\right\rangle\left\langle b\right|$ on the side of $\hat{\mu}_{\alpha_{1}}^{(I)}$ away from $\hat{\rho}_{\rm eq}$

To interpret response functions microscopically, we need to expand in the system eigenstates.

Let the indices a, b, c, d, \dots represent eigenstates of the *molecular* Hamiltonian:

- Noting that $\hat{\rho}_{eq}$ is diagonal, substitute $\hat{\rho}_{eq} = \sum_{a} |a\rangle \rho_{aa}^{(eq)} \langle a|$
- Insert the identity $\hat{1}=\sum_{b}\left|b\right\rangle\left\langle b\right|$ on the side of $\hat{\mu}_{\alpha_{1}}^{(I)}$ away from $\hat{\rho}_{\rm eq}$
- Insert the identity $\hat{1} = \sum_c |c\rangle \langle c|$ on the side of $\hat{\mu}_{\alpha_2}^{(I)}$ away from $\hat{\rho}_{\rm eq}$

To interpret response functions microscopically, we need to expand in the system eigenstates.

Let the indices a, b, c, d, \dots represent eigenstates of the molecular Hamiltonian:

- Noting that $\hat{\rho}_{eq}$ is diagonal, substitute $\hat{\rho}_{eq} = \sum_{a} |a\rangle \rho_{aa}^{(eq)} \langle a|$
- Insert the identity $\hat{1}=\sum_{b}\left|b\right\rangle\left\langle b\right|$ on the side of $\hat{\mu}_{\alpha_{1}}^{(I)}$ away from $\hat{\rho}_{\rm eq}$
- Insert the identity $\hat{1} = \sum_c |c\rangle \langle c|$ on the side of $\hat{\mu}_{\alpha_2}^{(I)}$ away from $\hat{\rho}_{\rm eq}$
- Repeat until reaching the last $\hat{\mu}^{(I)}_{lpha_n}.$

Step 1: Insert $\sum_{a} |a\rangle \rho_{aa}^{(eq)} \langle a|$ in place of $\hat{\rho}_{eq}$

$$\begin{split} \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}), \left[\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}), \left[\hat{\mu}_{\alpha_{1}}^{(I)}(0), \hat{\rho}_{eq}\right]\right] \\ &= \sum_{a} \left\{ \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\hat{\mu}_{\alpha_{1}}^{(I)}(0) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \\ &-\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{1}}^{(I)}(0) \\ &-\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\hat{\mu}_{\alpha_{1}}^{(I)}(0) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \\ &+\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{1}}^{(I)}(0) \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \\ &-\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\hat{\mu}_{\alpha_{1}}^{(I)}(0) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \\ &+\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{1}}^{(I)}(0) \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \\ &+\hat{\mu}_{\alpha_{1}}^{(I)}(0) \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \\ &- \left|a\right\rangle \rho_{aa}^{(eq)} \left\langle a\right| \hat{\mu}_{\alpha_{1}}^{(I)}(0) \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \right] \end{split}$$

Step 2: Insert $\hat{1} = \sum_{b} |b\rangle \langle b|$ on the side of $\hat{\mu}_{\alpha_1}^{(I)}$ away from $\hat{\rho}_{eq}$.

$$\begin{split} \left[\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}), \left[\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}), \left[\hat{\mu}_{\alpha_{1}}^{(I)}(0), \hat{\rho}_{eq} \right] \right] \right] \\ &= \sum_{ab} \left\{ \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) |b\rangle \left\langle b\right| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \right. \\ &- \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |b\rangle \left\langle b| \right. \\ &- \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) |b\rangle \left\langle b| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \right. \\ &+ \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |b\rangle \left\langle b| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \right. \\ &- \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) |b\rangle \left\langle b| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \right. \\ &+ \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |b\rangle \left\langle b| \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \right. \\ &+ |b\rangle \left\langle b| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \right. \\ &- |a\rangle \rho_{aa}^{(eq)} \left\langle a| \hat{\mu}_{\alpha_{1}}^{(I)}(0) |b\rangle \left\langle b| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \right. \\ \end{split}$$

Step 3: Insert $\hat{1} = \sum_{c} |c\rangle \langle c|$ on the side of $\hat{\mu}_{\alpha_{2}}^{(I)}$ away from $\hat{\rho}_{eq}$.

 $\left| \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2), \left[\hat{\mu}_{\alpha_2}^{(I)}(\tau_1), \left[\hat{\mu}_{\alpha_1}^{(I)}(0), \hat{\rho}_{\mathsf{eq}} \right] \right] \right]$ $=\sum \left\{ \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) | c \rangle \left\langle c | \, \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) | b \rangle \left\langle b | \, \hat{\mu}_{\alpha_1}^{(I)}(0) \, | a \rangle \, \rho_{aa}^{(\mathsf{eq})} \left\langle a | \right. \right. \right.$ ${}^{abc}-\hat{\mu}^{(I)}_{lpha_2}(au_1+ au_2)|c
angle\left\langle c|\,\hat{\mu}^{(I)}_{lpha_2}(au_1)\,|a
ight
angle\,
ho^{(\mathsf{eq})}_{aa}\left\langle a|\,\hat{\mu}^{(I)}_{lpha_1}(0)\,|b
ight
angle\left\langle b
ight
angle$ $-\hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1+\tau_2)|b\rangle \langle b| \hat{\mu}_{\alpha\gamma}^{(I)}(0)|a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\gamma}^{(I)}(\tau_1)|c\rangle \langle c|$ $+\hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1+\tau_2)|a\rangle \rho_{\alpha\alpha}^{(eq)}\langle a|\hat{\mu}_{\alpha\gamma}^{(I)}(0)|b\rangle \langle b|\hat{\mu}_{\alpha\gamma}^{(I)}(\tau_1)|c\rangle \langle c|$ $|-|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1)|b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2)$ $|+|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2)$ $||b\rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2)$ $-\left|a\right\rangle \rho_{aa}^{(\mathsf{eq})}\left\langle a\right|\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle \left\langle b\right|\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle \left\langle c\right|\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\right\rangle$

Step 4: Insert $\hat{1} = \sum_{d} |d\rangle \langle d|$ on the side of $\hat{\mu}_{\alpha_{3}}^{(I)}$ away from $\hat{\rho}_{eq}$. $\left| \hat{\mu}_{lpha_{3}}^{(I)}(au_{1}+ au_{2}), \left| \hat{\mu}_{lpha_{2}}^{(I)}(au_{1}), \left| \hat{\mu}_{lpha_{1}}^{(I)}(0), \hat{
ho}_{\mathsf{eq}} \right| \right|$ $L = \sum \left\{ |d
angle \langle d| \, \hat{\mu}_{lpha_3}^{(I)}(au_1 + au_2) |c
angle \langle c| \, \hat{\mu}_{lpha_2}^{(I)}(au_1) |b
angle \langle b| \, \hat{\mu}_{lpha_1}^{(I)}(0) \, |a
angle \,
ho_{aa}^{(\mathsf{eq})} \langle a|
ight.$ $a^{bcd} - \ket{d} \langle d \ket{\hat{\mu}_{lpha_2}^{(I)}(au_1 + au_2)} \ket{c} \langle c \ket{\hat{\mu}_{lpha_2}^{(I)}(au_1)} \ket{a}
ho_{aa}^{(\mathsf{eq})} \langle a \ket{\hat{\mu}_{lpha_1}^{(I)}(0)} \ket{b} \langle b \ket{b}$ $|-|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $|+|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $|-|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1)|b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0)|a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1+\tau_2)|d\rangle \langle d|$ $|+|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $||b\rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $- \left| a \right\rangle \rho_{aa}^{(\text{eq})} \left\langle a \right| \hat{\mu}_{\alpha_1}^{(I)}(0) \left| b \right\rangle \left\langle b \right| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \left| c \right\rangle \left\langle c \right| \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) \left| d \right\rangle \left\langle d \right| \right\rangle$

Third Order: Eigenstate Interpretation

System begins in state $|a\rangle \langle a|$

 $\left[\hat{\mu}_{\alpha_3}^{(I)}(\tau_1+\tau_2), \left[\hat{\mu}_{\alpha_2}^{(I)}(\tau_1), \left[\hat{\mu}_{\alpha_1}^{(I)}(0), \hat{\boldsymbol{\rho}}_{eq}\right]\right]\right]$

 $= \sum \left\{ |d\rangle \langle d| \, \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \langle c| \, \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |b\rangle \langle b| \, \hat{\mu}_{\alpha_1}^{(I)}(0) \, |a\rangle \, \rho_{aa}^{(eq)} \, \langle a| \right.$ $\overset{abcd}{-}|d\rangle \left\langle d| \ \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}+\tau_{2})|c\rangle \left\langle c| \ \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \ |a\rangle \ \rho_{aa}^{(\mathsf{eq})} \left\langle a| \ \hat{\mu}_{\alpha_{1}}^{(I)}(0) \ |b\rangle \left\langle b| \right\rangle \right\rangle$ $-|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $+|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1+\tau_2) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $-|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1)|b\rangle \langle b| \hat{\mu}_{\alpha\gamma}^{(I)}(0) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\gamma}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $|+|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\gamma}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha\gamma}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $|+|b\rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $- |a\rangle \rho_{aa}^{(\text{eq})} \langle a| \hat{\mu}_{\alpha_1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d| \Big\}$

$\hat{\mu}^{(I)}_{lpha_1}$ induces a transition to state b at t=0

$\left[\hat{\mu}_{\alpha_3}^{(I)}(\tau_1+\tau_2), \left[\hat{\mu}_{\alpha_2}^{(I)}(\tau_1), \left[\hat{\mu}_{\alpha_1}^{(I)}(\mathbf{0}), \hat{\rho}_{\mathsf{eq}}\right]\right]\right]$

 $=\sum_{abcd} \left\{ |d\rangle \langle d| \,\hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \langle c| \,\hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |b\rangle \langle b| \,\hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \,\rho_{aa}^{(eq)} \langle a| \\ - |d\rangle \langle d| \,\hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \langle c| \,\hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |a\rangle \,\rho_{aa}^{(eq)} \langle a| \,\hat{\mu}_{\alpha_1}^{(I)}(0) |b\rangle \langle b| \right\}$ $|-|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) | b \rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0) | a \rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) | c \rangle \langle c|$ $|+|d\rangle \langle d| \hat{\mu}_{\alpha \alpha}^{(I)}(\tau_1 + \tau_2) |a\rangle \rho_{\alpha \alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha \alpha}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha \alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $-|c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) | b \rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) | a \rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2) | d \rangle \langle d |$ $|+|c\rangle \langle c| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha 1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $|+|b\rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $- |a\rangle \rho_{aa}^{(\text{eq})} \langle a| \hat{\mu}_{\alpha_1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d| \Big\}$

 $\hat{\mu}^{(I)}_{lpha_2}$ induces a transition to state c at $t= au_1$

$\left[\hat{\mu}_{\alpha_3}^{(I)}(\tau_1+\tau_2), \left[\hat{\mu}_{\alpha_2}^{(I)}(\tau_1), \left[\hat{\mu}_{\alpha_1}^{(I)}(0), \hat{\rho}_{\mathsf{eq}}\right]\right]\right]$

 $= \sum_{abcd} \left\{ |d\rangle \langle d| \, \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \langle c| \, \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |b\rangle \langle b| \, \hat{\mu}_{\alpha_1}^{(I)}(0) \, |a\rangle \, \rho_{aa}^{(eq)} \langle a| \\ - |d\rangle \langle d| \, \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \langle c| \, \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \, |a\rangle \, \rho_{aa}^{(eq)} \langle a| \, \hat{\mu}_{\alpha_1}^{(I)}(0) \, |b\rangle \, \langle b| \right\}$ $|-|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) | b \rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0) | a \rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) | c \rangle \langle c|$ $|+|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $-|c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |b\rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $|+|c\rangle \langle c| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha 1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $||b\rangle \langle b| \hat{\mu}_{\alpha}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $- |a\rangle \rho_{aa}^{(\text{eq})} \langle a| \hat{\mu}_{\alpha_1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d| \Big\}$

 $\hat{\mu}_{lpha_3}^{(I)}$ induces a transition to state d at $t= au_1+ au_2$ $\left| \hat{\mu}_{lpha_{3}}^{(I)}(au_{1}+ au_{2}), \left| \hat{\mu}_{lpha_{2}}^{(I)}(au_{1}), \left| \hat{\mu}_{lpha_{1}}^{(I)}(0), \hat{
ho}_{\mathsf{eq}} \right| \right|
ight|$ $= \sum_{abcd} \left\{ |d\rangle \left\langle d| \, \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \left\langle c| \, \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |b\rangle \left\langle b| \, \hat{\mu}_{\alpha_1}^{(I)}(0) \, |a\rangle \, \rho_{aa}^{(eq)} \left\langle a| \right. \right. \\ \left. - |d\rangle \left\langle d| \, \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) |c\rangle \left\langle c| \, \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \, |a\rangle \, \rho_{aa}^{(eq)} \left\langle a| \, \hat{\mu}_{\alpha_1}^{(I)}(0) \, |b\rangle \left\langle b| \right. \right\} \right\}$ $|-|d\rangle \langle d| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |b\rangle \langle b| \hat{\mu}_{\alpha1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |c\rangle \langle c|$ $|+|d\rangle \langle d| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1 + \tau_2) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha 1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1) |c\rangle \langle c|$ $|-|c\rangle \langle c| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1) |b\rangle \langle b| \hat{\mu}_{\alpha\alpha}^{(I)}(0) |a\rangle \rho_{\alpha\alpha}^{(eq)} \langle a| \hat{\mu}_{\alpha\alpha}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $|+|c\rangle \langle c| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha 1}^{(I)}(0) |b\rangle \langle b| \hat{\mu}_{\alpha 2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $||b\rangle \langle b| \hat{\mu}_{\alpha_1}^{(I)}(0) |a\rangle \rho_{aa}^{(eq)} \langle a| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) |c\rangle \langle c| \hat{\mu}_{\alpha_2}^{(I)}(\tau_1 + \tau_2) |d\rangle \langle d|$ $-\left|a\right\rangle \rho_{aa}^{\left(\mathsf{eq}\right)}\left\langle a\right|\hat{\mu}_{\alpha_{1}}^{\left(I\right)}(0)\left|b\right\rangle \left\langle b\right|\hat{\mu}_{\alpha_{2}}^{\left(I\right)}(\tau_{1})\left|c\right\rangle \left\langle c\right|\hat{\mu}_{\alpha_{3}}^{\left(I\right)}(\tau_{1}+\tau_{2})\left|d\right\rangle \left\langle d\right|\right\rangle$

Back to the Diagrams

Back to the Diagrams

Back to the Diagrams

Transition Dipoles

æ

Back to the Response Function

Our diagrams so far represent components

 $|x\rangle \langle y|$

of the perturbed density matrix. E.g.,

 $\left|b\right\rangle \left\langle b\right| \hat{\mu}_{\alpha_{1}}^{(I)}(0) \left|a\right\rangle \rho_{aa}^{(\mathsf{eq})} \left\langle a\right| \hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}) \left|c\right\rangle \left\langle c\right| \hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}) \left|d\right\rangle \left\langle d\right|$

Back to the Response Function

Our diagrams so far represent components

 $|x\rangle \langle y|$

of the perturbed density matrix. E.g.,

 $\left|\boldsymbol{b}\right\rangle\left\langle b\right|\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|a\right\rangle\rho_{aa}^{(\mathsf{eq})}\left\langle a\right|\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle \boldsymbol{d}\right|$

Back to the Response Function

Our diagrams so far represent components

 $|x\rangle \langle y|$

of the perturbed density matrix. E.g.,

 $|\mathbf{b}\rangle \langle b| \,\hat{\mu}_{\alpha_1}^{(I)}(0) \,|a\rangle \,\rho_{aa}^{(\mathsf{eq})} \,\langle a| \,\hat{\mu}_{\alpha_2}^{(I)}(\tau_1) \,|c\rangle \,\langle c| \,\hat{\mu}_{\alpha_3}^{(I)}(\tau_1+\tau_2) \,|d\rangle \,\langle d|$

In the response function, we have terms of the form

$$\begin{aligned} &\operatorname{Tr}\left\{\hat{\mu}_{\alpha}^{(n)}\left|x\right\rangle\left\langle y\right|\right\}\\ &=\sum_{n}\left\langle n\right|\hat{\mu}_{\alpha}\left|x\right\rangle\left\langle y\right|\left.n\right\rangle\\ &=\left\langle y\right|\hat{\mu}_{\alpha}\left|x\right\rangle\end{aligned}$$

In our response function expansion:

$$\begin{aligned} & \mathsf{Tr}\Big\{\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\Big[\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2}),\Big[\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1}),\Big[\hat{\mu}_{\alpha_{1}}^{(I)}(0),\hat{\rho}_{\mathsf{eq}}\Big]\Big]\Big]\Big\} \\ &=\mathsf{Tr}\Big\{\sum_{abcd}\Big\{ \end{aligned}$$

 $\begin{aligned} & +\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|d\right\rangle\left\langle d\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|d\right\rangle\left\langle d\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|d\right\rangle\left\langle d\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\\ & +\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|d\right\rangle\left\langle d\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & +\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{2}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{3}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(0)\left|b\right\rangle\left\langle b\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\ & -\hat{\mu}_{\alpha}^{(I)}(\tau_{1}+\tau_{2}+\tau_{3})\left|a\right\rangle\,\rho_{aa}^{(eq)}\left\langle a\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(\tau_{1})\left|c\right\rangle\left\langle c\right|\,\hat{\mu}_{\alpha_{1}}^{(I)}(\tau_{1}+\tau_{2})\left|d\right\rangle\left\langle d\right|\\$

In our response function expansion:

$$\mathsf{Tr} \Big\{ \hat{\mu}_{\alpha}^{(I)}(\tau_1 + \tau_2 + \tau_3) \Big[\hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2), \Big[\hat{\mu}_{\alpha_2}^{(I)}(\tau_1), \Big[\hat{\mu}_{\alpha_1}^{(I)}(0), \hat{\rho}_{\mathsf{eq}} \Big] \Big] \Big] \Big\}$$

= $\mathsf{Tr} \Big\{ \sum_{abcd} \Big\{$

 $+ \langle a | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | d \rangle \langle d | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | c \rangle \langle c | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | b \rangle \langle b | \hat{\mu}_{\alpha1}^{(I)}(0) | a \rangle \rho_{aa}^{(eq)} \\ - \langle b | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | d \rangle \langle d | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | c \rangle \langle c | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha1}^{(I)}(0) | b \rangle \\ - \langle c | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | d \rangle \langle d | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | b \rangle \langle b | \hat{\mu}_{\alpha1}^{(I)}(0) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | c \rangle \\ + \langle c | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | d \rangle \langle d | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha1}^{(I)}(0) | b \rangle \langle b | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | c \rangle \\ - \langle d | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | c \rangle \langle c | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | b \rangle \langle b | \hat{\mu}_{\alpha1}^{(I)}(0) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | d \rangle \\ + \langle d | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | c \rangle \langle c | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha1}^{(I)}(0) | b \rangle \langle b | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | d \rangle \\ + \langle d | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | b \rangle \langle b | \hat{\mu}_{\alpha1}^{(I)}(0) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1}) | c \rangle \langle c | \hat{\mu}_{\alpha3}^{(I)}(\tau_{1} + \tau_{2}) | d \rangle \\ - \langle d | \hat{\mu}_{\alpha}^{(I)}(\tau_{1} + \tau_{2} + \tau_{3}) | a \rangle \rho_{aa}^{(eq)} \langle a | \hat{\mu}_{\alpha1}^{(I)}(0) | b \rangle \langle b | \hat{\mu}_{\alpha2}^{(I)}(\tau_{1} + \tau_{2}) | d \rangle$

Dipole Moment Matrix Elements

We can now generate simple rules for identifying dipole matrix elements from our diagrams:

- Matrix elements of the interaction dipoles $\hat{\mu}_{\alpha_1}^{(I)}, ..., \hat{\mu}_{\alpha_n}^{(I)}$ are taken across consecutive rungs of the ladder
- The matrix element of the signal dipole $\hat{\mu}_{\alpha}$ is taken along the final rung of the ladder

$\langle b | \hat{\mu}_{\alpha}^{(I)}(\tau_1 + \tau_2 + \tau_3) | \mathbf{d} \rangle \langle \mathbf{d} | \hat{\mu}_{\alpha_3}^{(I)}(\tau_1 + \tau_2) | c \rangle \langle c | \hat{\mu}_{\alpha_2}^{(I)}(\tau_1) | \mathbf{a} \rangle \underset{\alpha}{\overset{\text{(eq)}}{\Rightarrow}} \langle \mathbf{a} | \hat{\mu}_{\underline{\alpha_1}}^{(I)}(\mathbf{0}) | \mathbf{b} \rangle \underset{\alpha}{\Rightarrow} \langle \mathbf{a} | \hat{\mu}_{\underline{\alpha_1}}^{(I)}(\mathbf{0}) | \mathbf{b} \rangle$

Frequency Components

< 行

э

Frequency Components

Recall that

$$\hat{\mu}_{\alpha}^{(I)}(t) \equiv e^{\frac{i}{\hbar}\hat{H}_{o}t}\hat{\mu}_{\alpha}e^{-\frac{i}{\hbar}\hat{H}_{o}t}.$$

< 行

э

Frequency Components

Recall that

$$\hat{\mu}_{\alpha}^{(I)}(t) \equiv e^{\frac{i}{\hbar}\hat{H}_{o}t}\hat{\mu}_{\alpha}e^{-\frac{i}{\hbar}\hat{H}_{o}t}.$$

Taking matrix elements:

$$\begin{aligned} \langle x | \, \hat{\mu}_{\alpha}^{(I)}(t) \, | y \rangle &= \langle x | \, e^{\frac{i}{\hbar} \hat{H}_o t} \hat{\mu}_{\alpha} e^{-\frac{i}{\hbar} \hat{H}_o t} \, | y \rangle \\ &= \langle x | \, e^{i\omega_x t} \hat{\mu}_{\alpha} e^{-i\omega_y t} \, | y \rangle \\ &= e^{i\omega_x y t} \, \langle x | \, \hat{\mu}_{\alpha} \, | y \rangle \,. \end{aligned}$$

26 / 33

 $e^{i(\Omega_1\tau_1+\ldots+\Omega_n\tau_n)}$

where each transition *above* rung m contributes to Ω_m as follows:

• An $x \to y$ transition on the *left* contributes a frequency ω_{xy}

 $e^{i(\Omega_1\tau_1+\ldots+\Omega_n\tau_n)}$

where each transition *above* rung m contributes to Ω_m as follows:

- An $x \to y$ transition on the *left* contributes a frequency ω_{xy}
- An $x \to y$ transition on the *right* contributes a frequency $-\omega_{xy}$

 $e^{i(\Omega_1\tau_1+\ldots+\Omega_n\tau_n)}$

where each transition *above* rung m contributes to Ω_m as follows:

- An $x \to y$ transition on the *left* contributes a frequency ω_{xy}
- An $x \to y$ transition on the *right* contributes a frequency $-\omega_{xy}$
- Signal indices xy at the top of the ladder contribute a frequency -ωxy

 $e^{i(\Omega_1\tau_1+\ldots+\Omega_n\tau_n)}$

where each transition *above* rung m contributes to Ω_m as follows:

- An $x \to y$ transition on the *left* contributes a frequency ω_{xy}
- An $x \to y$ transition on the *right* contributes a frequency $-\omega_{xy}$
- Signal indices xy at the top of the ladder contribute a frequency -ωxy

 $e^{i(\Omega_1\tau_1+\ldots+\Omega_n\tau_n)}$

where each transition *above* rung m contributes to Ω_m as follows:

- An $x \to y$ transition on the *left* contributes a frequency ω_{xy}
- An $x \to y$ transition on the *right* contributes a frequency $-\omega_{xy}$
- Signal indices xy at the *top* of the ladder contribute a frequency $-\omega_{xy}$

NB: τ_m appears in all exponentials **above** rung m.

Adding all contributions:

- $\Omega_m = (\text{left signal state frequency}) (m^{\text{th}} \text{ left rung state frequency})$
 - (right signal state frequency) + (m^{th} right rung state frequency)
 - $+ \left(\mathsf{left \ signal \ state \ frequency} \right) \left(\mathsf{right \ signal \ state \ frequency} \right)$
 - $=(m^{th} right rung state frequency) (m^{th} left rung state frequency)$

Key Point: For each τ_m , our expansion terms oscillate as $e^{-i\omega_{xy}\tau_m}$, where x and y are the eigenstate indices between the m and m + 1 rungs.

Summary

Each n^{th} -order term is a product of of

- Prefactors $\left(\frac{i}{\hbar}\right)^n \Theta(\tau_1)...\Theta(\tau_n)$
- One dipole $\mu^{xy}_{\alpha_m}$ for each transition $x \to y$ on the right side of the diagram
- One dipole $\mu^{yx}_{\alpha_m}$ for each transition $x \to y$ on the left side of the diagram
- An exponential $e^{-i\omega_{xy}\tau_m}$ for the pair of states x,y above each rung
- Add an overall minus sign if there are an odd number of arrows on the right

Arrow-Ladder Diagrams

< 行

э

To keep track of indices, it's useful to add arrows:

- Arrow pointing **in** means **absorption**: eigenstate index increases
- Arrow pointing **out** means **emission**: eigenstate index decreases

To keep track of indices, it's useful to add arrows:

- Arrow pointing **in** means **absorption**: eigenstate index increases
- Arrow pointing **out** means **emission**: eigenstate index decreases

But wait! There's more!

Note that

- A **positive** transition **frequency** on the **left** corresponds to **absorption**
- A **positive** transition **frequency** on the **right** corresponds to **emission**

31 / 33

To keep track of indices, it's useful to add arrows:

- Arrow pointing **in** means **absorption**: eigenstate index increases
- Arrow pointing **out** means **emission**: eigenstate index decreases

But wait! There's more!

Note that

- A **positive** transition **frequency** on the **left** corresponds to **absorption**
- A **positive** transition **frequency** on the **right** corresponds to **emission**

So what?

31 / 33

So:

- Right-pointing arrows correspond to positive interaction frequencies with the field
- Left-pointing arrows correspond to negative interaction frequencies with the field

And:

The sign of the n^{th} interaction frequency is tied to the sign of the n^{th} interaction *k*-vector

Key Point: Each wavevector sum condition corresponds to a particular sequence (e.g., "left-left-right" or "right-left-right") of arrows on ladder diagrams

Arrow-Ladder Diagrams

Example: Third-Order Diagrams

