Molecular Excitons

Mike Reppert

November 12, 2020

Molecular Excitons

A molecular exciton is a delocalized excited state created by interactions between nearby molecules

NB: The molecular exciton picture is an approximation to reality that drastically simplifies many problems.

Molecular Excitons

A molecular exciton is a delocalized excited state created by interactions between nearby molecules

NB: The molecular exciton picture is an approximation to reality that drastically simplifies many problems.

Molecular Excitons

A molecular exciton is a delocalized excited state created by interactions between nearby molecules

NB: The molecular exciton picture is an approximation to reality that drastically simplifies many problems.

The Site Basis

The site basis is an orthonormal basis consisting of local-excitation wavefunctions

Ground State:

Singly-Excited States:

Multiply-Excited States:

The Site Basis

The site basis is an orthonormal basis consisting of local-excitation wavefunctions:

Ground State:

$$
\Phi_{0}=\phi_{0}\left(x_{1}\right) \phi_{0}\left(x_{2}\right) \ldots \phi_{0}\left(x_{n}\right)
$$

Singly-Excited States:

$$
\begin{gathered}
\Phi_{1}=\phi_{1}\left(x_{1}\right) \phi_{0}\left(x_{2}\right) \ldots \phi_{0}\left(x_{n}\right) \\
\vdots \\
\Phi_{n}=\phi_{0}\left(x_{1}\right) \phi_{0}\left(x_{3}\right) \ldots \phi_{0}\left(x_{n-1}\right) \phi_{1}\left(x_{n}\right)
\end{gathered}
$$

Multiply-Excited States:

$$
\begin{gathered}
\Phi_{11}=\phi_{2}\left(x_{1}\right) \phi_{0}\left(x_{2}\right) \ldots \phi_{0}\left(x_{n}\right) \\
\Phi_{12}=\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{0}\left(x_{3}\right) \ldots \phi_{0}\left(x_{n}\right)
\end{gathered}
$$

The Site Basis

The site basis is an orthonormal basis consisting of local-excitation wavefunctions

Ground State:

$$
|0\rangle=|0, \ldots, 0\rangle
$$

Singly-Excited States:

$$
\begin{gathered}
|1\rangle=|1,0, \ldots, 0\rangle \\
\vdots \\
|n\rangle=|0, \ldots, 0,1\rangle
\end{gathered}
$$

Multiply-Excited States:

$$
\begin{gathered}
|11\rangle=|2,0, \ldots, 0\rangle \\
|12\rangle=|1,1,0, \ldots, 0\rangle
\end{gathered}
$$

The Site-Basis Hamiltonian

The Hamiltonian matrix for a molecular exciton system is obtained by taking matrix elements in a particular subspace, e.g., singly-excited states:

	\|1)	12)	13)	14)	15)	16)	17>
\|1)							
\|2)							
13)							
\|4)							
4, 15>							
\|16)							
\|17)							

$$
H_{m n}=\langle m| \hat{H}|n\rangle
$$

Intra-Manifold Coupling

Hold up! What about inter-subspace interactions?

Intra-Manifold Coupling

Hold up! What about inter-subspace interactions?

Answer: The large energy differences between excitation manifolds effectively weakens coupling!

The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing the Hamiltonian matrix:

$$
\hat{U}^{\dagger} \hat{H} \hat{U}=\hat{D}
$$

The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing the Hamiltonian matrix:

$$
\hat{U}^{\dagger} \hat{H} \hat{U}=\hat{D}
$$

The columns of \hat{U} are eigenvectors of \hat{H}.
The diagonal elements of \hat{D} are eigenvalues of \hat{H}.

The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing the Hamiltonian matrix:

$$
\hat{U}^{\dagger} \hat{H} \hat{U}=\hat{D}
$$

The columns of \hat{U} are eigenvectors of \hat{H}.
The diagonal elements of \hat{D} are eigenvalues of \hat{H}.

The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing the Hamiltonian matrix:

$$
\hat{U}^{\dagger} \hat{H} \hat{U}=\hat{D}
$$

The columns of \hat{U} are eigenvectors of \hat{H}.
The diagonal elements of \hat{D} are eigenvalues of \hat{H}.

Spectroscopic Calculations

We've seen previously that spectroscopic response functions are determined by the eigenvalues of \hat{H} and by the transition dipole matrix elements $\mu_{\alpha}^{m n}$ between system eigenstates.

Question: We just calculated the eigenvalues of \hat{H}. How do we get $\mu_{\alpha}^{m n}$?

Spectroscopic Calculations

We've seen previously that spectroscopic response functions are determined by the eigenvalues of \hat{H} and by the transition dipole matrix elements $\mu_{\alpha}^{m n}$ between system eigenstates.

Question: We just calculated the eigenvalues of \hat{H}. How do we get $\mu_{\alpha}^{m n}$?

Answer: Use the same transformation!

$$
\mu_{\alpha}^{\tilde{m} \tilde{n}}=\left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U}\right]_{\tilde{m} \tilde{n}}
$$

Dipole moment matrix elements

Since we're usually interested only in $0 \rightarrow \tilde{m}$ transitions:

$$
\mu_{\alpha}^{\tilde{m} 0}=\left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U}\right]_{\tilde{m} 0}=\sum_{j k} U_{j \tilde{m}} U_{k 0} \mu_{\alpha}^{\tilde{j} \tilde{k}}
$$

Dipole moment matrix elements

Since we're usually interested only in $0 \rightarrow \tilde{m}$ transitions:

$$
\mu_{\alpha}^{\tilde{m} 0}=\left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U}\right]_{\tilde{m} 0}=\sum_{j k} U_{j \tilde{m}} U_{k 0} \mu_{\alpha}^{\tilde{j} \tilde{k}}
$$

Because ground and excited states don't mix:

$$
\mu_{\alpha}^{\tilde{m} 0}=\left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U}\right]_{\tilde{m} \tilde{n}}=\sum_{j k} U_{j \tilde{m}} U_{k 0} \mu_{\alpha}^{\tilde{j} \tilde{k}}=\sum_{j} U_{j \tilde{m}} \mu_{\alpha}^{\tilde{j} 0}
$$

Dipole moment matrix elements

Since we're usually interested only in $0 \rightarrow \tilde{m}$ transitions:

$$
\mu_{\alpha}^{\tilde{m} 0}=\left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U}\right]_{\tilde{m} 0}=\sum_{j k} U_{j \tilde{m}} U_{k 0} \mu_{\alpha}^{\tilde{j} \tilde{k}}
$$

Because ground and excited states don't mix:

$$
\mu_{\alpha}^{\tilde{m} 0}=\left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U}\right]_{\tilde{m} \tilde{n}}=\sum_{j k} U_{j \tilde{m}} U_{k 0} \mu_{\alpha}^{\tilde{j} \tilde{k}}=\sum_{j} U_{j \tilde{m}} \mu_{\alpha}^{\tilde{j} 0} .
$$

Key Point The dipole moment transforms like a vector!

Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

$$
\hat{H}=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]
$$

Question: How do we find the eigenvalues?

Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

$$
\hat{H}=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]
$$

Question: How do we find the eigenvalues?
Answer: Set the determinant of $\hat{H}-\lambda \hat{1}$ equal to zero and solve for λ :

$$
\begin{aligned}
&\left|\begin{array}{cc}
-\Delta-\lambda & v \\
v & \Delta-\lambda
\end{array}\right|=(-\Delta-\lambda)(\Delta-\lambda)-v^{2} \\
& \Downarrow \\
& \lambda= \\
& \pm \sqrt{v^{2}+\Delta^{2}}
\end{aligned}
$$

A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

$$
\hat{H}=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]
$$

Question: How do we find the eigenvectors?

A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

$$
\hat{H}=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]
$$

Question: How do we find the eigenvectors?
Answer: Plug in a value for λ and solve:

$$
\lambda_{ \pm}\left[\begin{array}{l}
u_{1}^{(\pm)} \\
u_{2}^{(\pm)}
\end{array}\right]=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]\left[\begin{array}{l}
u_{1}^{(\pm)} \\
u_{2}^{(\pm)}
\end{array}\right]=\left[\begin{array}{c}
-\Delta u_{1}^{(\pm)}+v u_{2}^{(\pm)} \\
v u_{1}^{(\pm)}+\Delta u_{2}^{(\pm)}
\end{array}\right]
$$

gives

$$
\boldsymbol{u}^{(\pm)}=\left[\begin{array}{c}
\sin \theta_{ \pm} \\
\cos \theta_{ \pm}
\end{array}\right]
$$

with

$$
\tan \theta_{ \pm}=\frac{v}{\Delta \pm \sqrt{\Delta^{2}+v^{2}}}
$$

A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

$$
\hat{H}=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]
$$

Question: How do we find the dipole elements?

A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

$$
\hat{H}=\left[\begin{array}{cc}
-\Delta & v \\
v & \Delta
\end{array}\right]
$$

Question: How do we find the dipole elements?
Answer: Transform the local-site dipoles!

$$
\mu_{\alpha}^{(\pm, 0)}=\sin \theta_{ \pm} \mu_{\alpha}^{10}+\cos \theta_{ \pm} \mu_{\alpha}^{20}
$$

