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Molecular Excitons

A molecular exciton is a
delocalized excited state cre-
ated by interactions between
nearby molecules

NB: The molecular exciton
picture is an approximation
to reality that drastically sim-
plifies many problems.
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The Site Basis

The site basis is an orthonormal basis consisting of
local-excitation wavefunctions

Ground State:
Singly-Excited States:

Multiply-Excited States:
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The Site Basis

The site basis is an orthonormal basis consisting of
local-excitation wavefunctions:

Ground State:
Py = ¢o(z1)Po(72)...00(2n)

Singly-Excited States:

1 = ¢1(x1)¢o(2)...d0(2n)

o, = ¢0($1)¢0($3.)---¢0(33n71)¢1(%)
Multiply-Excited States:
D11 = ¢o(w1)po(w2)..-Po(Tn)
D19 = ¢1(21)91(22)Po(x3)...Po(Tn)
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The Site Basis

The site basis is an orthonormal basis consisting of
local-excitation wavefunctions

Ground State:

|O> = |Oa : a0>
Singly-Excited States:
|1) =11,0,...,0)
|ny =10,...,0,1)

Multiply-Excited States:
111) = [2,0,...,0)

112) = |1,1,0,...,0)
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The Site-Basis Hamiltonian

The Hamiltonian matrix for a molecular exciton system
is obtained by taking matrix elements in a particular
subspace, e.g., singly-excited states:
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Intra-Manifold Coupling

Hold up! What about inter-subspace interactions?
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Answer: The large energy differences between
excitation manifolds effectively weakens coupling!
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The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing
the Hamiltonian matrix:

U'HU = D
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The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing
the Hamiltonian matrix:

U'HU = D
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The columns of U are eigenvectors of H.
The diagonal elements of D are eigenvalues of H.
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The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing
the Hamiltonian matrix:

JHU = D
U'HU =
Iy 12y 13 4y 15 I8y I 1) 12y 13 14 15 I8 D@ 5 W 5 e EREEENCEC NG
113 1y (5]
) 12} )
[} 13y 3
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The columns of U are eigenvectors of H.
The diagonal elements of D are eigenvalues of H.
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The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing
the Hamiltonian matrix:
00 = D

e S [ I O I N ) |1} 12 3k B4y 15y [&x 1Ty 11y 12y 13 &) 15 16y 17

The columns of U are eigenvectors of H.
The diagonal elements of D are eigenvalues of H.
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Spectroscopic Calculations

We've seen previously that spectroscopic response

functions are determined by the eigenvalues of H and by
the transition dipole matrix elements ;)" between
system eigenstates.

Question: We just calculated the eigenvalues of H. How
do we get p"?
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Spectroscopic Calculations

We've seen previously that spectroscopic response

functions are determined by the eigenvalues of H and by
the transition dipole matrix elements ;)" between
system eigenstates.

Question: We just calculated the eigenvalues of H. How
do we get p"?

Answer: Use the same transformation!

sz = [UT/}&U} .

mn
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Dipole moment matrix elements

Since we're usually interested only in 0 — m transitions:

g = [UTﬂaU} o Z UsinUropd®
ik
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Dipole moment matrix elements

Since we're usually interested only in 0 — m transitions:

g = [UTﬂaU} o Z UsinUropd®
ik

Because ground and excited states don't mix:

MZIO = [ﬁT AaU:| . = Z UijkO,ua Z ]m:u’a .
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Dipole moment matrix elements

Since we're usually interested only in 0 — m transitions:

g = [UTﬂaU} o Z UsinUropd®
ik

Because ground and excited states don't mix:

o = [UTAQU} = UinUrond = ZUJm“gxo'

Key Point The dipole moment transforms like a vector!
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Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

Question: How do we find the eigenvalues?
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Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

Question: How do we find the eigenvalues?

Answer: Set the determinant of H — A\ equal to zero
and solve for A:

'—A—)\ v ‘

; A_/\:(—A—)\)(A—)\)—vz

A =+vVv?2 + A2
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A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

A —-A v
=4

Question: How do we find the eigenvectors?
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A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

” -A v
=4

Question: How do we find the eigenvectors?

Answer: Plug in a value for A and solve:

\ ugi) _[—A v} ugi) _ —Augi)+vu§i)
* ugi) v A ugi) vugi)—f—Augi)
gives
u(i) _ sinHi
cos 04+
with

v
tanfp = —— ———.
= A+ VAZ 492
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A Simple Example: The Excitonic Dimer

Consider a generic two-site model:
- -A v
o= 4]

Question: How do we find the dipole elements?
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A Simple Example: The Excitonic Dimer

Consider a generic two-site model:
- A w
o= 4]
Question: How do we find the dipole elements?

Answer: Transform the local-site dipoles!

M(i’o) = sin Giuao + cos Hiuio.

a
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