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Molecular Excitons

A molecular exciton is a
delocalized excited state cre-
ated by interactions between
nearby molecules

NB: The molecular exciton
picture is an approximation
to reality that drastically sim-
plifies many problems.
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The Site Basis

The site basis is an orthonormal basis consisting of
local-excitation wavefunctions

Ground State:

Singly-Excited States:

. . .
Multiply-Excited States:

. . .
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The Site Basis

The site basis is an orthonormal basis consisting of
local-excitation wavefunctions:

Ground State:
Φ0 = φ0(x1)φ0(x2)...φ0(xn)

Singly-Excited States:

Φ1 = φ1(x1)φ0(x2)...φ0(xn)
...

Φn = φ0(x1)φ0(x3)...φ0(xn−1)φ1(xn)

Multiply-Excited States:

Φ11 = φ2(x1)φ0(x2)...φ0(xn)

Φ12 = φ1(x1)φ1(x2)φ0(x3)...φ0(xn)
...
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The Site Basis

The site basis is an orthonormal basis consisting of
local-excitation wavefunctions

Ground State:
|0〉 = |0, ..., 0〉

Singly-Excited States:
|1〉 = |1, 0, ..., 0〉

...

|n〉 = |0, ..., 0, 1〉

Multiply-Excited States:

|11〉 = |2, 0, ..., 0〉

|12〉 = |1, 1, 0, ..., 0〉
...
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The Site-Basis Hamiltonian

The Hamiltonian matrix for a molecular exciton system
is obtained by taking matrix elements in a particular
subspace, e.g., singly-excited states:

Hmn =
〈
m
∣∣∣Ĥ∣∣∣n〉
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Intra-Manifold Coupling

Hold up! What about inter-subspace interactions?

Answer: The large energy differences between
excitation manifolds effectively weakens coupling!
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The Exciton Basis

Molecular eigenstates can be calculated by diagonalizing
the Hamiltonian matrix:

Û †ĤÛ = D̂

The columns of Û are eigenvectors of Ĥ.

The diagonal elements of D̂ are eigenvalues of Ĥ.
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Mike Reppert Molecular Excitons 8 / 13 November 12, 2020 8 / 13



Spectroscopic Calculations

We’ve seen previously that spectroscopic response
functions are determined by the eigenvalues of Ĥ and by
the transition dipole matrix elements µmnα between
system eigenstates.

Question: We just calculated the eigenvalues of Ĥ. How
do we get µmnα ?

Answer: Use the same transformation!

µm̃ñα =
[
Û †µ̂αÛ

]
m̃ñ

Mike Reppert Molecular Excitons 9 / 13 November 12, 2020 9 / 13



Spectroscopic Calculations

We’ve seen previously that spectroscopic response
functions are determined by the eigenvalues of Ĥ and by
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Dipole moment matrix elements

Since we’re usually interested only in 0 → m̃ transitions:

µm̃0
α =

[
Û †µ̂αÛ

]
m̃0

=
∑
jk

Ujm̃Uk0µ
j̃k̃
α

Because ground and excited states don’t mix:

µm̃0
α =

[
Û †µ̂αÛ

]
m̃ñ

=
∑
jk

Ujm̃Uk0µ
j̃k̃
α =

∑
j

Ujm̃µ
j̃0
α .

Key Point The dipole moment transforms like a vector!
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Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

Ĥ =

[
−∆ v
v ∆

]
Question: How do we find the eigenvalues?

Answer: Set the determinant of Ĥ − λ1̂ equal to zero
and solve for λ:∣∣∣∣−∆− λ v

v ∆− λ

∣∣∣∣ = (−∆− λ) (∆− λ)− v2

⇓

λ = ±
√
v2 + ∆2.
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A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

Ĥ =

[
−∆ v
v ∆

]
Question: How do we find the eigenvectors?

Answer: Plug in a value for λ and solve:

λ±

[
u
(±)
1

u
(±)
2

]
=

[
−∆ v
v ∆

] [
u
(±)
1

u
(±)
2

]
=

[
−∆u

(±)
1 + vu

(±)
2

vu
(±)
1 + ∆u

(±)
2

]
gives

u(±) =

[
sin θ±
cos θ±

]
with

tan θ± =
v

∆±
√

∆2 + v2
.
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A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

Ĥ =

[
−∆ v
v ∆

]
Question: How do we find the dipole elements?

Answer: Transform the local-site dipoles!

µ(±,0)α = sin θ±µ
10
α + cos θ±µ

20
α .
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