Molecular Excitons

Mike Reppert

November 12, 2020

A **molecular exciton** is a delocalized excited state created by interactions between nearby molecules

NB: The molecular exciton picture is an **approximation** to reality that drastically simplifies many problems.

A **molecular exciton** is a delocalized excited state created by interactions between nearby molecules

NB: The molecular exciton picture is an **approximation** to reality that drastically simplifies many problems.

A **molecular exciton** is a delocalized excited state created by interactions between nearby molecules

NB: The molecular exciton picture is an **approximation** to reality that drastically simplifies many problems.

The Site Basis

The **site basis** is an orthonormal basis consisting of local-excitation wavefunctions

Ground State:

Singly-Excited States:

Multiply-Excited States:

The Site Basis

The **site basis** is an orthonormal basis consisting of local-excitation wavefunctions:

Ground State:

$$\Phi_0 = \phi_0(x_1)\phi_0(x_2)...\phi_0(x_n)$$

Singly-Excited States:

$$\Phi_{1} = \phi_{1}(x_{1})\phi_{0}(x_{2})...\phi_{0}(x_{n})$$

$$\vdots$$

$$\Phi_{n} = \phi_{0}(x_{1})\phi_{0}(x_{3})...\phi_{0}(x_{n-1})\phi_{1}(x_{n})$$

Multiply-Excited States:

$$\Phi_{11} = \phi_2(x_1)\phi_0(x_2)...\phi_0(x_n)$$

$$\Phi_{12} = \phi_1(x_1)\phi_1(x_2)\phi_0(x_3)...\phi_0(x_n)$$

The Site Basis

The **site basis** is an orthonormal basis consisting of local-excitation wavefunctions

Ground State:

$$|0\rangle = |0,...,0\rangle$$

Singly-Excited States:

$$\begin{aligned} |1\rangle &= |1, 0, ..., 0\rangle \\ \vdots \\ |n\rangle &= |0, ..., 0, 1\rangle \end{aligned}$$

Multiply-Excited States:

$$|11\rangle = |2, 0, ..., 0\rangle$$

 $|12\rangle = |1, 1, 0, ..., 0\rangle$

The Site-Basis Hamiltonian

The **Hamiltonian matrix** for a molecular exciton system is obtained by taking matrix elements in a particular subspace, e.g., singly-excited states:

$$H_{mn} = \left\langle m \left| \hat{H} \right| n \right\rangle$$

Intra-Manifold Coupling

Hold up! What about inter-subspace interactions?

Intra-Manifold Coupling

Hold up! What about inter-subspace interactions?

Answer: The **large energy differences** between excitation manifolds effectively weakens coupling!

$$\hat{U}^{\dagger}\hat{H}\hat{U}=\hat{D}$$

$$\hat{U}^{\dagger}\hat{H}\hat{U}=\hat{D}$$

The **columns** of \hat{U} are **eigenvectors** of \hat{H} . The **diagonal elements** of \hat{D} are **eigenvalues** of \hat{H} .

$$\hat{U}^{\dagger}\hat{H}\hat{U}=\hat{D}$$

The **columns** of \hat{U} are **eigenvectors** of \hat{H} . The **diagonal elements** of \hat{D} are **eigenvalues** of \hat{H} .

$$\hat{U}^{\dagger}\hat{H}\hat{U}=\hat{D}$$

The **columns** of \hat{U} are **eigenvectors** of \hat{H} . The **diagonal elements** of \hat{D} are **eigenvalues** of \hat{H} . We've seen previously that spectroscopic response functions are determined by the **eigenvalues** of \hat{H} and by the **transition dipole matrix elements** μ_{α}^{mn} between system eigenstates.

Question: We just calculated the eigenvalues of \hat{H} . How do we get μ_{α}^{mn} ?

We've seen previously that spectroscopic response functions are determined by the **eigenvalues** of \hat{H} and by the **transition dipole matrix elements** μ_{α}^{mn} between system eigenstates.

Question: We just calculated the eigenvalues of \hat{H} . How do we get μ_{α}^{mn} ?

Answer: Use the same transformation!

$$\mu^{\tilde{m}\tilde{n}}_{\alpha} = \left[\hat{U}^{\dagger} \hat{\mu}_{\alpha} \hat{U} \right]_{\tilde{m}\tilde{n}}$$

Since we're usually interested only in $0 \rightarrow \tilde{m}$ transitions:

$$\mu_{\alpha}^{\tilde{m}0} = \left[\hat{U}^{\dagger}\hat{\mu}_{\alpha}\hat{U}\right]_{\tilde{m}0} = \sum_{jk} U_{j\tilde{m}} U_{k0} \mu_{\alpha}^{\tilde{j}\tilde{k}}$$

10/13

Since we're usually interested only in $0 \rightarrow \tilde{m}$ transitions:

$$\mu_{\alpha}^{\tilde{m}0} = \left[\hat{U}^{\dagger}\hat{\mu}_{\alpha}\hat{U}\right]_{\tilde{m}0} = \sum_{jk} U_{j\tilde{m}} U_{k0} \mu_{\alpha}^{\tilde{j}\tilde{k}}$$

Because ground and excited states don't mix:

$$\mu_{\alpha}^{\tilde{m}0} = \left[\hat{U}^{\dagger}\hat{\mu}_{\alpha}\hat{U}\right]_{\tilde{m}\tilde{n}} = \sum_{jk} U_{j\tilde{m}}U_{k0}\mu_{\alpha}^{\tilde{j}\tilde{k}} = \sum_{j} U_{j\tilde{m}}\mu_{\alpha}^{\tilde{j}0}.$$

Since we're usually interested only in $0 \rightarrow \tilde{m}$ transitions:

$$\mu_{\alpha}^{\tilde{m}0} = \left[\hat{U}^{\dagger}\hat{\mu}_{\alpha}\hat{U}\right]_{\tilde{m}0} = \sum_{jk} U_{j\tilde{m}} U_{k0} \mu_{\alpha}^{\tilde{j}\tilde{k}}$$

Because ground and excited states don't mix:

$$\mu_{\alpha}^{\tilde{m}0} = \left[\hat{U}^{\dagger}\hat{\mu}_{\alpha}\hat{U}\right]_{\tilde{m}\tilde{n}} = \sum_{jk} U_{j\tilde{m}}U_{k0}\mu_{\alpha}^{\tilde{j}\tilde{k}} = \sum_{j} U_{j\tilde{m}}\mu_{\alpha}^{\tilde{j}0}.$$

Key Point The dipole moment transforms like a vector!

Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

$$\hat{H} = egin{bmatrix} -\Delta & v \ v & \Delta \end{bmatrix}$$

Question: How do we find the eigenvalues?

Example: Eigenvalues for the Excitonic Dimer

Consider a generic two-site model:

$$\hat{H} = egin{bmatrix} -\Delta & v \ v & \Delta \end{bmatrix}$$

Question: How do we find the eigenvalues?

Answer: Set the determinant of $\hat{H} - \lambda \hat{1}$ equal to zero and solve for λ :

A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

$$\hat{H} = \begin{bmatrix} -\Delta & v \\ v & \Delta \end{bmatrix}$$

Question: How do we find the eigenvectors?

A Simple Example: The Excitonic Dimer

Consider a generic two-site model:

$$\hat{H} = \begin{bmatrix} -\Delta & v \\ v & \Delta \end{bmatrix}$$

Question: How do we find the eigenvectors?

Answer: Plug in a value for λ and solve:

$$\lambda_{\pm} \begin{bmatrix} u_1^{(\pm)} \\ u_2^{(\pm)} \end{bmatrix} = \begin{bmatrix} -\Delta & v \\ v & \Delta \end{bmatrix} \begin{bmatrix} u_1^{(\pm)} \\ u_2^{(\pm)} \end{bmatrix} = \begin{bmatrix} -\Delta u_1^{(\pm)} + v u_2^{(\pm)} \\ v u_1^{(\pm)} + \Delta u_2^{(\pm)} \end{bmatrix}$$

gives

$$oldsymbol{u}^{(\pm)} = egin{bmatrix} \sin heta_{\pm} \ \cos heta_{\pm} \end{bmatrix}$$

with

$$\tan\theta_{\pm} = \frac{v}{\Delta \pm \sqrt{\Delta^2 + v^2}}$$

Consider a generic two-site model:

$$\hat{H} = \begin{bmatrix} -\Delta & v \\ v & \Delta \end{bmatrix}$$

Question: How do we find the dipole elements?

13/13

Consider a generic two-site model:

$$\hat{H} = \begin{bmatrix} -\Delta & v \\ v & \Delta \end{bmatrix}$$

Question: How do we find the dipole elements? **Answer:** Transform the local-site dipoles!

$$\mu_{\alpha}^{(\pm,0)} = \sin \theta_{\pm} \mu_{\alpha}^{10} + \cos \theta_{\pm} \mu_{\alpha}^{20}.$$

13/13