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Fluorescence

Fluorescence

1 Excite the sample

2 Collect radiant light at 90o

3 Monitor in one of two modes:

Emission: Spectrum = Light
intensity as a function of
frequency, with a fixed
excitation wavelength
Fluorescence Excitation:
Spectrum = light intensity at
a fixed wavelength as a
function of excitation
frequency.

https://www.chromedia.org/dchro/

gfx/ZgbwordJmB.jpeg

Fluorescence Excitation spectra typically resemble spectra.
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Fluorescence

Stokes Shift

Experimentally: Absorption
and emission peaks are sepa-
rated by a Stokes Shift.

Results from elec-
tron/vibration interac-
tions and from

QUANTUM
MECHANICS!
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Fluorescence

Response Theory

Q: So how does fluorescence fit into our response theory
framework?

A: It doesn’t!
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Fluorescence

Response Theory: Average Physics

Recall: Response theory works with macroscopic fields:

E(x, t) ≡ 〈e(x, t)〉M

Microstate Macrostate
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Fluorescence

Incoherent Fields

In incoherent processes, the average field is zero – but
the average intensity is not!
Fluorescence gives a typical example:

A single dipole emits a coherent field with a
well-defined phase

An ensemble of dipoles with uncorrelated phases emit
an incoherent field with a stochastic phase.
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Fluorescence

Fluorescence: Light after Dephasing

Consider an ensemble of dipoles with the same frequency
ω and polarization ε but random phases:

〈E(t)〉 =
1

2π
ε

∫ 2π

0
sin(ωt+ φ) = 0.

〈I(t)〉 =
ε2

2π

∫ 2π

0
sin2(ωt+ φ)

= − ε
2

8π

∫ 2π

0

(
e2i(ωt+φ) − 2 + e−2i(ωt+φ)

)
= −ε

2

2
.

Although the average field is zero, the average
intensity is not! ⇐ Fluorescence
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Fluorescence

Take-Home Points

Fluorescence corresponds to radiation of light
from a completely dephased sample – the phase
of each microscopic emitter is random!

This process falls outside the scope of our de-
velopment of response theory since the average
field is zero. (Though it can be related!)

Even though the mean field vanishes, the mean
intensity – and hence the radiant energy – is
nonzero.

The Stokes shift between absorption and
emission spectra results from the quantum pop-
ulation weighting of vibrational energy states.
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Hole Burning Spectroscopy

Hole Burning Spectroscopy
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Hole Burning Spectroscopy

Hole Burning Experiment

1 Sample temperature → ∼5 K.

2 Measure absorption spectrum

3 Fry it with a narrow-band laser

4 Measure the spectrum again

5 Signal = Pre-burn absorption -
post-burn absorption

https://www.janis.com/Products/productsoverview/

SuperTranContinuousFlowCryostatSystems/ST-100_

OpticalCryostat.aspx
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Hole Burning Spectroscopy

Low-Temperature Absorption Spectra

Large low-temperature absorption
spectra are determined by two factors:

Inhomogeneous broadening:
The distribution of electronic
transition frequencies (site
energies) associated with
different sites in the material

Homogeneous broadening:
The finite width of the
absorption spectrum at each site

The bulk absorption spectrum is a
convolution of the single-site spec-
trum and the probability density

Chem. Rev. 2011, 111, 4546-4598
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Hole Burning Spectroscopy

Convolutions

A convolution is a mathematical operation that
combines two functions:

f ∗ g(x) =
∫
dx′f(x′)g(x− x′)

Key Concept: f ∗ g looks like a weighted average of
shifted copies of g(x), where

The integral dx′ runs over all possible shifts

The function f(x′) sets the weight at each shift.
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Hole Burning Spectroscopy

The Convolution Theorem

A side note: Fourier Transforms are still magical:

f ∗ g(x) = IFT
{
f̃ · g̃

}
.

Convolutions become products in the Fourier domain!

Examples: https://github.com/mreppert/CHM676/
blob/master/FourierTransforms.ipynb
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Hole Burning Spectroscopy

Back to Hole Burning

Narrow-band excitation creates a “hole” in the site-energy
density function
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Hole Burning Spectroscopy

What does Hole Burning tell you?

1 Inhomogeneous vs.
Homogeneous broadening ⇒
Material homogeneity

2 Line width ⇒ Excited state
lifetimes

3 Satellite holes ⇒ Excitonic
interactions

4 Single-site line shapes ⇒
Electronic/vibrational
interactions

Hole Burning + Fluorescence
⇒ ∆ FLN

Chem. Rev. 2011, 111, 4546-4598
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Hole Burning Spectroscopy

Take-Home Points

Two types of broadening in disordered systems:

Homogeneous broadening affects all sites the
same ⇒ Single-site spectrum

Inhomogeneous broadening affects each
pigment differently ⇒ Site-energy distribution

Low-temperature spectra are a convolution of the
single-site spectrum and the site-energy distribution.

The convolution f ∗ g is an f -weighted average of
all possible shifted copies of g.

Fourier transforms convert convolutions to products:

f̃ ∗ g = f̃ · g̃

.
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Hole Burning Spectroscopy

Take-Home Points

Hole Burning monitors changes to low-temperature
absorption due to narrow-band excitation.

The narrow-band laser selectively excites resonant
pigments and “burns a hole” in the spectrum.

Hole burning can

Separate homogeneous and inhomogeneous
broadening effects

Provide single-site spectra and site-energy
distributions

Give details on electronic/vibrational interactions

Uncover excitonic interactions
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