Linear Response

Mike Reppert

September 28, 2020

Previously on CHM676...

We saw that the polarization of a dielectric material can be expanded in a perturbative series:

$$
P_{\alpha}(t)=\sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t)
$$

Previously on CHM676...

We saw that the polarization of a dielectric material can be expanded in a perturbative series:

$$
P_{\alpha}(t)=\sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t)
$$

where

$$
\begin{aligned}
P_{\alpha}^{(n)}(t)=\sum_{\alpha_{1}, \ldots, \alpha_{n}} & \int_{-\infty}^{\infty} d \tau_{n} \ldots \int_{-\infty}^{\infty} d \tau_{1} R_{\alpha_{1} \ldots \alpha_{n} \alpha}^{(n)}\left(\tau_{1}, \ldots, \tau_{n}\right) \\
& \times E_{\alpha_{1}}\left(t-\tau_{1}-\ldots-\tau_{n}\right) E_{\alpha_{2}}\left(t-\tau_{2}-\ldots-\tau_{n}\right) \ldots E_{\alpha_{n}}\left(t-\tau_{n}\right)
\end{aligned}
$$

$R_{\alpha_{1} \ldots \alpha_{n} \alpha}^{(n)}\left(\tau_{1}, \ldots, \tau_{n}\right)$ is the $n^{\text {th }}$-order response function for the material.

Previously on CHM676...

We saw that the polarization of a dielectric material can be expanded in a perturbative series:

$$
P_{\alpha}(t)=\sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t)
$$

where

$$
\begin{aligned}
P_{\alpha}^{(n)}(t)=\sum_{\alpha_{1}, \ldots, \alpha_{n}} & \int_{-\infty}^{\infty} d \tau_{n} \ldots \int_{-\infty}^{\infty} d \tau_{1} R_{\alpha_{1} \ldots \alpha_{n} \alpha}^{(n)}\left(\tau_{1}, \ldots, \tau_{n}\right) \\
& \times E_{\alpha_{1}}\left(t-\tau_{1}-\ldots-\tau_{n}\right) E_{\alpha_{2}}\left(t-\tau_{2}-\ldots-\tau_{n}\right) \ldots E_{\alpha_{n}}\left(t-\tau_{n}\right)
\end{aligned}
$$

$R_{\alpha_{1} \ldots}^{(n)} \alpha_{n} \alpha\left(\tau_{1}, \ldots, \tau_{n}\right)$ is the n^{th}-order response function for the material.

Today: First-order - a.k.a. "linear" - response

Outline for Today:

(1) Solving Maxwell's Equations
(2) Absorption Spectroscopy

Solving Maxwell's Equations

Linear Response Regime

Under linear response conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$
P_{\alpha}^{(1)}(t)=\sum_{\beta} \int_{-\infty}^{\infty} d \tau R_{\alpha \beta}^{(1)}(\tau) E_{\beta}(t-\tau) .
$$

Linear Response Regime

Under linear response conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$
P_{\alpha}^{(1)}(t)=\sum_{\beta} \int_{-\infty}^{\infty} d \tau R_{\alpha \beta}^{(1)}(\tau) E_{\beta}(t-\tau) .
$$

The linear response regime is dictated by:

- Field intensity

Linear Response Regime

Under linear response conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$
P_{\alpha}^{(1)}(t)=\sum_{\beta} \int_{-\infty}^{\infty} d \tau R_{\alpha \beta}^{(1)}(\tau) E_{\beta}(t-\tau) .
$$

The linear response regime is dictated by:

- Field intensity
- Material properties

Linear Response Regime

Under linear response conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$
P_{\alpha}^{(1)}(t)=\sum_{\beta} \int_{-\infty}^{\infty} d \tau R_{\alpha \beta}^{(1)}(\tau) E_{\beta}(t-\tau) .
$$

The linear response regime is dictated by:

- Field intensity
- Material properties
- Field spectrum.

Linear Isotropic Media

Under linear response conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$
P_{\alpha}^{(1)}(t)=\sum_{\beta} \int_{-\infty}^{\infty} d \tau R_{\alpha \beta}^{(1)}(\tau) E_{\beta}(t-\tau) .
$$

We'll focus on isotropic media where symmetry dictates that

$$
R_{x x}^{(1)}=R_{y y}^{(1)}=R_{z z}^{(1)} \equiv R^{(1)} .
$$

Linear Isotropic Media

Under linear response conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$
P_{\alpha}^{(1)}(t)=\sum_{\beta} \int_{-\infty}^{\infty} d \tau R_{\alpha \beta}^{(1)}(\tau) E_{\beta}(t-\tau) .
$$

We'll focus on isotropic media where symmetry dictates that

$$
R_{x x}^{(1)}=R_{y y}^{(1)}=R_{z z}^{(1)} \equiv R^{(1)} .
$$

Then

$$
\boldsymbol{P}^{(1)}(t)=\int_{-\infty}^{\infty} d \tau R^{(1)}(\tau) \boldsymbol{E}(t-\tau) .
$$

Solving Maxwell's Equations

The field dynamics are governed by the linear response equation and Maxwell's Equations:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =-4 \pi \nabla \cdot \boldsymbol{P}(\boldsymbol{x}, t) \\
\nabla \cdot \boldsymbol{B} & =0 \\
\nabla \times \boldsymbol{E}+\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} & =0 \\
\nabla \times \boldsymbol{B}-\frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} & =\frac{4 \pi}{c} \frac{\partial \boldsymbol{P}(\boldsymbol{x}, t)}{\partial t}
\end{aligned}
$$

This still looks pretty bad!

The Partially-transformed Field

Life gets much better if we Fourier transform w.r.t. time:

$$
\breve{\boldsymbol{E}}(\boldsymbol{x}, \omega) \equiv \int_{-\infty}^{\infty} d t e^{\mathrm{i} \omega t} \boldsymbol{E}(\boldsymbol{x}, t) .
$$

The Partially-transformed Field

Life gets much better if we Fourier transform w.r.t. time:

$$
\breve{\boldsymbol{E}}(\boldsymbol{x}, \omega) \equiv \int_{-\infty}^{\infty} d t e^{\mathrm{i} \omega t} \boldsymbol{E}(\boldsymbol{x}, t) .
$$

The linear response relation becomes:

$$
\begin{aligned}
\breve{\boldsymbol{P}}^{(1)}(\omega)=\int d t e^{\mathrm{i} \omega t} \boldsymbol{P}^{(1)}(t) & =\left(\int d \tau R^{(1)}(\tau) e^{\mathrm{i} \omega \tau}\right) \breve{\boldsymbol{E}}(\omega) \\
& \equiv \chi(\omega) \breve{\boldsymbol{E}}(\omega) .
\end{aligned}
$$

where $\chi(\omega)$ is the linear susceptibility.

The Partially-transformed Field

Life gets much better if we Fourier transform w.r.t. time:

$$
\breve{\boldsymbol{E}}(\boldsymbol{x}, \omega) \equiv \int_{-\infty}^{\infty} d t e^{\mathrm{i} \omega t} \boldsymbol{E}(\boldsymbol{x}, t) .
$$

The linear response relation becomes:

$$
\begin{aligned}
\breve{\boldsymbol{P}}^{(1)}(\omega)=\int d t e^{\mathrm{i} \omega t} \boldsymbol{P}^{(1)}(t) & =\left(\int d \tau R^{(1)}(\tau) e^{\mathrm{i} \omega \tau}\right) \breve{\boldsymbol{E}}(\omega) \\
& \equiv \chi(\omega) \breve{\boldsymbol{E}}(\omega) .
\end{aligned}
$$

where $\chi(\omega)$ is the linear susceptibility.
No more convolution! Fourier transforms are magical! Fourier transforms convert convolutions to products.

Maxwell's Equations in the Fourier Domain

Transforming Maxwell's equations and inserting the transformed linear response relation we get:

$$
\begin{aligned}
(1+4 \pi \chi) \nabla \cdot \breve{\boldsymbol{E}} & =0 \\
\nabla \cdot \breve{\boldsymbol{B}} & =0 \\
\nabla \times \breve{\boldsymbol{E}}-\frac{\mathrm{i} \omega}{c} \breve{\boldsymbol{B}} & =0 \\
\nabla \times \breve{\boldsymbol{B}}+\frac{\mathrm{i} \omega}{c}(1+4 \pi \chi) \breve{\boldsymbol{E}} & =0 .
\end{aligned}
$$

Maxwell's Equations in the Fourier Domain

Transforming Maxwell's equations and inserting the transformed linear response relation we get:

$$
\begin{aligned}
(1+4 \pi \chi) \nabla \cdot \breve{\boldsymbol{E}} & =0 \\
\nabla \cdot \breve{\boldsymbol{B}} & =0 \\
\nabla \times \breve{\boldsymbol{E}}-\frac{\mathrm{i} \omega}{c} \breve{\boldsymbol{B}} & =0 \\
\nabla \times \breve{\boldsymbol{B}}+\frac{\mathrm{i} \omega}{c}(1+4 \pi \chi) \breve{\boldsymbol{E}} & =0 .
\end{aligned}
$$

It's convenient to define the electric permittivity:

$$
\varepsilon(\omega) \equiv 1+4 \pi \chi(\omega)
$$

Attenuated Wave Equation

Rearranging Maxwell's Equations (the usual!) gives a modified wave equation

$$
\nabla^{2} \breve{\boldsymbol{E}}+\frac{\omega^{2}}{c^{2}} \varepsilon \breve{\boldsymbol{E}}=0
$$

with solutions of the form

$$
\breve{\boldsymbol{E}}(\boldsymbol{x}, \omega)=\tilde{\boldsymbol{A}}(\omega) \mathrm{e}^{\mathrm{i} \frac{\omega}{c} \sqrt{\boldsymbol{\varepsilon}} \cdot \boldsymbol{x}},
$$

where \hat{s} is a real unit vector.

Attenuated Wave Equation

Rearranging Maxwell's Equations (the usual!) gives a modified wave equation

$$
\nabla^{2} \breve{\boldsymbol{E}}+\frac{\omega^{2}}{c^{2}} \varepsilon \breve{\boldsymbol{E}}=0
$$

with solutions of the form

$$
\breve{\boldsymbol{E}}(\boldsymbol{x}, \omega)=\tilde{\boldsymbol{A}}(\omega) \mathrm{e}^{\mathrm{i} \frac{\omega}{c} \sqrt{\varepsilon} \hat{s} \cdot \boldsymbol{x}},
$$

where $\hat{\boldsymbol{s}}$ is a real unit vector.
NB: The complete solution is a linear combination of such solutions that satisfies the boundary conditions of the problem!

Take-Home Point

Linear Response: $\boldsymbol{R}^{(1)}$ dominates.

In isotropic media linear response is governed by scalar quantities:

- The response function $R^{(1)}(\tau)$ or
- the susceptibility $\chi(\omega)=\int d \tau R^{(1)}(\tau) e^{\mathrm{i} \omega \tau}$ or
- the permittivity $\varepsilon(\omega) \equiv 1+4 \pi \chi(\omega)$

Under linear response, solutions to MEs resemble propagating waves with attenuated amplitude and shifting phase due to $\varepsilon(\omega)$.

Absorption Spectroscopy

Absorption Spectroscopy

Let's think about a specific set of boundary conditions: Vacuum Sample Vacuum

Absorption Spectroscopy

Let's think about a specific set of boundary conditions:

Vacuum Sample Vacuum

Then

$$
\check{\boldsymbol{E}}(\boldsymbol{x}, \omega)=\tilde{\boldsymbol{A}}(\omega) \cdot\left\{\begin{array}{cc}
\frac{\mathrm{e}^{\mathrm{i} \frac{\mathrm{i}}{}} \frac{}{c} z}{}, & z<0 \\
\mathrm{e}^{\mathrm{i} \frac{\omega}{c}} \sqrt{\varepsilon(\omega) z}, & 0 \leq z \leq \ell \\
\mathrm{e}^{\mathrm{i} \frac{\omega}{c}(\sqrt{\varepsilon \varepsilon(\omega) \ell})}, & z>\ell
\end{array}\right.
$$

Linear Processes

$$
\boldsymbol{E}(\boldsymbol{x}, t) \propto \mathrm{e}^{\mathrm{i} \omega\left(\frac{z}{c} \sqrt{\varepsilon(\omega)}-t\right)}
$$

$\operatorname{Re} \sqrt{\varepsilon} \neq 0 \quad \operatorname{Im} \sqrt{\varepsilon}=0$

$\operatorname{Re} \sqrt{\varepsilon}=1 \quad \operatorname{Im} \sqrt{\varepsilon} \neq 0$

The refractive index $n(\omega) \equiv \operatorname{Re} \sqrt{\varepsilon(\omega)}$
decreases the wavelength.

The extinction coefficient $\kappa(\omega) \equiv \operatorname{Im} \sqrt{\varepsilon(\omega)}$
decreases the amplitude.

Absorption Spectroscopy

Experimentally, we monitor the transmittance

$$
T(\omega)=\frac{I(\omega)}{I_{o}(\omega)}=\frac{\|\tilde{A}(\omega)\|^{2} \mathrm{e}^{-\frac{2 \omega}{c} \operatorname{lm} \sqrt{\varepsilon(\omega) \ell}}}{\|\tilde{A}(\omega)\|^{2}}=\mathrm{e}^{-\frac{2 \omega}{c} \kappa(\omega) \ell}
$$

or the absorbance

$$
A(\omega)=-\log T(\omega)=\frac{2 \omega \ell}{c \ln 10} \kappa(\omega) .
$$

Absorption Spectroscopy

Note that if $\operatorname{Im} \chi^{(1)}(\omega) \ll 1$:

$$
\begin{aligned}
& n(\omega) \approx \sqrt{1+4 \pi \operatorname{Re} \chi} \\
& \kappa(\omega) \approx \frac{2 \pi \operatorname{Im} \chi}{n(\omega)}
\end{aligned}
$$

and

$$
A(\omega)=\frac{4 \pi \omega \ell}{c n(\omega) \ln 10} \operatorname{lm} \chi(\omega)
$$

Absorption spectroscopy probes $\operatorname{Im} \chi^{(1)!}$

Take-Home Points

In isotropic media linear response is characterized by scalar quantities:

- Response function $R^{(1)}(\tau)$
- Susceptibility $\chi^{(1)}(\omega)=\int d \tau R^{(1)}(\tau) e^{\mathrm{i} \omega \tau}$
- Permittivity $\varepsilon(\omega) \equiv 1+4 \pi \chi(\omega)$
- Extinction coefficient: $\kappa(\omega) \equiv \operatorname{Im} \sqrt{\varepsilon(\omega)}$
- Refractive index: $n(\omega) \equiv \operatorname{Re} \sqrt{\varepsilon(\omega)}$

Absorption spectroscopy monitors $\kappa(\omega) \approx \operatorname{Im} \chi^{(1)}$.

