Linear Response

Mike Reppert

September 28, 2020

Previously on CHM676...

We saw that the polarization of a dielectric material can be expanded in a perturbative series:

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t)$$

Previously on CHM676...

We saw that the polarization of a dielectric material can be expanded in a perturbative series:

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t)$$

where

$$P_{\alpha}^{(n)}(t) = \sum_{\alpha_1,...,\alpha_n} \int_{-\infty}^{\infty} d\tau_n \dots \int_{-\infty}^{\infty} d\tau_1 R_{\alpha_1...\alpha_n\alpha}^{(n)}(\tau_1,...,\tau_n) \\ \times E_{\alpha_1}(t-\tau_1-...-\tau_n) E_{\alpha_2}(t-\tau_2-...-\tau_n) \dots E_{\alpha_n}(t-\tau_n).$$

 $R_{\alpha_1...\alpha_n\alpha}^{(n)}(\tau_1,...,\tau_n)$ is the n^{th} -order *response function* for the material.

Previously on CHM676...

We saw that the polarization of a dielectric material can be expanded in a perturbative series:

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t)$$

where

$$\begin{aligned} P_{\alpha}^{(n)}(t) &= \sum_{\alpha_1,...,\alpha_n} \int_{-\infty}^{\infty} d\tau_n \dots \int_{-\infty}^{\infty} d\tau_1 R_{\alpha_1...\alpha_n\alpha}^{(n)}(\tau_1,...,\tau_n) \\ &\times E_{\alpha_1}(t-\tau_1-...-\tau_n) E_{\alpha_2}(t-\tau_2-...-\tau_n) \dots E_{\alpha_n}(t-\tau_n). \end{aligned}$$

 $R_{\alpha_1...\alpha_n\alpha}^{(n)}(\tau_1,...,\tau_n)$ is the n^{th} -order *response function* for the material.

Today: First-order – a.k.a. "linear" – response

Outline for Today:

Solving Maxwell's Equations

Under **linear response** conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$P_{\alpha}^{(1)}(t) = \sum_{\beta} \int_{-\infty}^{\infty} d\tau R_{\alpha\beta}^{(1)}(\tau) E_{\beta}(t-\tau).$$

Under **linear response** conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$P_{\alpha}^{(1)}(t) = \sum_{\beta} \int_{-\infty}^{\infty} d\tau R_{\alpha\beta}^{(1)}(\tau) E_{\beta}(t-\tau).$$

The linear response regime is dictated by:

• Field intensity

Under **linear response** conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$P_{\alpha}^{(1)}(t) = \sum_{\beta} \int_{-\infty}^{\infty} d\tau R_{\alpha\beta}^{(1)}(\tau) E_{\beta}(t-\tau).$$

The linear response regime is dictated by:

- Field intensity
- Material properties

Under **linear response** conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$P_{\alpha}^{(1)}(t) = \sum_{\beta} \int_{-\infty}^{\infty} d\tau R_{\alpha\beta}^{(1)}(\tau) E_{\beta}(t-\tau).$$

The linear response regime is dictated by:

- Field intensity
- Material properties
- Field spectrum.

Linear Isotropic Media

Under **linear response** conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$P_{\alpha}^{(1)}(t) = \sum_{\beta} \int_{-\infty}^{\infty} d\tau R_{\alpha\beta}^{(1)}(\tau) E_{\beta}(t-\tau).$$

We'll focus on *isotropic media* where symmetry dictates that

$$R_{xx}^{(1)} = R_{yy}^{(1)} = R_{zz}^{(1)} \equiv R^{(1)}.$$

Linear Isotropic Media

Under **linear response** conditions, the total polarization $\mathbf{P}(t)$ is dominated by the linear response

$$P_{\alpha}^{(1)}(t) = \sum_{\beta} \int_{-\infty}^{\infty} d\tau R_{\alpha\beta}^{(1)}(\tau) E_{\beta}(t-\tau).$$

We'll focus on *isotropic media* where symmetry dictates that

$$R_{xx}^{(1)} = R_{yy}^{(1)} = R_{zz}^{(1)} \equiv R^{(1)}.$$

Then

$$\boldsymbol{P}^{(1)}(t) = \int_{-\infty}^{\infty} d\tau R^{(1)}(\tau) \boldsymbol{E}(t-\tau).$$

Solving Maxwell's Equations

The field dynamics are governed by the linear response equation and Maxwell's Equations:

$$\nabla \cdot \boldsymbol{E} = -4\pi \nabla \cdot \boldsymbol{P}(\boldsymbol{x}, t)$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}(\boldsymbol{x}, t)}{\partial t}.$$

This still looks pretty bad!

7 / 17

The Partially-transformed Field

Life gets much better if we Fourier transform w.r.t. time:

$$\breve{\boldsymbol{E}}(\boldsymbol{x},\omega) \equiv \int_{-\infty}^{\infty} dt e^{\mathrm{i}\omega t} \boldsymbol{E}(\boldsymbol{x},t).$$

The Partially-transformed Field

Life gets much better if we Fourier transform w.r.t. time:

$$\breve{\boldsymbol{E}}(\boldsymbol{x},\omega) \equiv \int_{-\infty}^{\infty} dt e^{\mathrm{i}\omega t} \boldsymbol{E}(\boldsymbol{x},t).$$

The linear response relation becomes:

$$\begin{split} \vec{P}^{(1)}(\omega) &= \int dt e^{i\omega t} P^{(1)}(t) = \left(\int d\tau R^{(1)}(\tau) e^{i\omega \tau} \right) \breve{E}(\omega) \\ &\equiv \chi(\omega) \breve{E}(\omega). \end{split}$$

where $\chi(\omega)$ is the **linear susceptibility**.

8 / 17

The Partially-transformed Field

Life gets much better if we Fourier transform w.r.t. time:

$$\breve{\boldsymbol{E}}(\boldsymbol{x},\omega) \equiv \int_{-\infty}^{\infty} dt e^{\mathrm{i}\omega t} \boldsymbol{E}(\boldsymbol{x},t).$$

The linear response relation becomes:

$$\begin{split} \vec{P}^{(1)}(\omega) &= \int dt e^{i\omega t} P^{(1)}(t) = \left(\int d\tau R^{(1)}(\tau) e^{i\omega \tau} \right) \vec{E}(\omega) \\ &\equiv \chi(\omega) \vec{E}(\omega). \end{split}$$

where $\chi(\omega)$ is the **linear susceptibility**.

No more convolution! Fourier transforms are magical! *Fourier transforms convert convolutions to products.*

Mike Reppert

Maxwell's Equations in the Fourier Domain

Transforming Maxwell's equations and inserting the transformed linear response relation we get:

$$(1 + 4\pi\chi) \nabla \cdot \vec{E} = 0$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} - \frac{i\omega}{c} \vec{B} = 0$$
$$\nabla \times \vec{B} + \frac{i\omega}{c} (1 + 4\pi\chi) \vec{E} = 0.$$

9 / 17

Maxwell's Equations in the Fourier Domain

Transforming Maxwell's equations and inserting the transformed linear response relation we get:

$$(1 + 4\pi\chi) \nabla \cdot \vec{E} = 0$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} - \frac{i\omega}{c} \vec{B} = 0$$
$$\nabla \times \vec{B} + \frac{i\omega}{c} (1 + 4\pi\chi) \vec{E} = 0.$$

It's convenient to define the electric permittivity:

$$\varepsilon(\omega) \equiv 1 + 4\pi\chi(\omega).$$

Attenuated Wave Equation

Rearranging Maxwell's Equations (the usual!) gives a modified wave equation

$$\nabla^2 \breve{\boldsymbol{E}} + \frac{\omega^2}{c^2} \varepsilon \breve{\boldsymbol{E}} = 0$$

with solutions of the form

$$\breve{E}(\boldsymbol{x},\omega) = \tilde{A}(\omega) \mathrm{e}^{\mathrm{i} rac{\omega}{c} \sqrt{\varepsilon} \hat{\boldsymbol{s}} \cdot \boldsymbol{x}},$$

where \hat{s} is a real unit vector.

Attenuated Wave Equation

Rearranging Maxwell's Equations (the usual!) gives a modified wave equation

$$\nabla^2 \breve{\boldsymbol{E}} + \frac{\omega^2}{c^2} \varepsilon \breve{\boldsymbol{E}} = 0$$

with solutions of the form

$$\breve{\boldsymbol{E}}(\boldsymbol{x},\omega) = \tilde{\boldsymbol{A}}(\omega) \mathrm{e}^{\mathrm{i}\frac{\omega}{c}\sqrt{\varepsilon}\hat{\boldsymbol{s}}\cdot\boldsymbol{x}},$$

where \hat{s} is a real unit vector.

NB: The complete solution is a linear combination of such solutions that satisfies the *boundary conditions* of the problem!

Take-Home Point

Linear Response: $R^{(1)}$ dominates.

In **isotropic media** linear response is governed by *scalar* quantities:

- The response function $R^{(1)}(\tau)$ or
- the susceptibility $\chi(\omega)=\int d\tau R^{(1)}(\tau)e^{\mathrm{i}\omega\tau}$ or
- the permittivity $\varepsilon(\omega) \equiv 1 + 4\pi \chi(\omega)$

Under linear response, solutions to MEs resemble propagating waves with **attenuated amplitude** and **shifting phase** due to $\varepsilon(\omega)$.

September 28, 2020

æ

Absorption Spectroscopy

Let's think about a specific set of boundary conditions: Vacuum Sample Vacuum

$$\downarrow_{z=0}$$
 $z=/$ $z=/$

Absorption Spectroscopy

Vacuum

Let's think about a specific set of boundary conditions:

Sample

X = 0 Z = / Z

Then

$$\breve{\boldsymbol{E}}(\boldsymbol{x},\omega) = \tilde{\boldsymbol{A}}(\omega) \cdot \begin{cases} \mathrm{e}^{\mathrm{i}\frac{\omega}{c}z}, & z < 0\\ \mathrm{e}^{\mathrm{i}\frac{\omega}{c}}\sqrt{\varepsilon(\omega)z}, & 0 \le z \le \ell\\ \mathrm{e}^{\mathrm{i}\frac{\omega}{c}}\left(\sqrt{\varepsilon(\omega)\ell+z}\right), & z > \ell \end{cases}$$

Vacuum

Linear Processes

$$oldsymbol{E}(oldsymbol{x},t) \propto \mathrm{e}^{\mathrm{i}\omega\left(rac{z}{c}\sqrt{arepsilon(\omega)}-t
ight)}$$

$$Re\sqrt{\epsilon} \neq 0 \quad Im\sqrt{\epsilon} = 0$$

The refractive index $n(\omega) \equiv \text{Re}\sqrt{\varepsilon(\omega)}$ decreases the wavelength.

$$\operatorname{Re}\sqrt{\varepsilon} = 1 \quad \operatorname{Im}\sqrt{\varepsilon} \neq 0$$

$$\operatorname{The extinction coefficient}_{\kappa(\omega)} \equiv \operatorname{Im}\sqrt{\varepsilon(\omega)}_{\text{decreases the amplitude.}}$$

Experimentally, we monitor the transmittance

$$T(\omega) = \frac{I(\omega)}{I_o(\omega)} = \frac{\left\|\tilde{A}(\omega)\right\|^2 e^{-\frac{2\omega}{c} \operatorname{Im}\sqrt{\varepsilon(\omega)\ell}}}{\left\|\tilde{A}(\omega)\right\|^2} = e^{-\frac{2\omega}{c}\kappa(\omega)\ell}$$

or the *absorbance*

$$A(\omega) = -\log T(\omega) = \frac{2\omega\ell}{c\ln 10}\kappa(\omega).$$

Note that if $Im\chi^{(1)}(\omega) \ll 1$:

$$\begin{split} n(\omega) &\approx \sqrt{1 + 4\pi \text{Re}\chi} \\ \kappa(\omega) &\approx \frac{2\pi \text{Im}\chi}{n(\omega)} \end{split}$$

and

$$A(\omega) = \frac{4\pi\omega\ell}{cn(\omega)\ln 10} \mathrm{Im}\chi(\omega).$$

Absorption spectroscopy probes $Im\chi^{(1)}$!

Mike Reppert

September 28, 2020

Take-Home Points

In isotropic media linear response is characterized by *scalar quantities*:

- \bullet Response function $R^{(1)}(\tau)$
- Susceptibility $\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{\mathrm{i}\omega\tau}$
- Permittivity $\varepsilon(\omega)\equiv 1+4\pi\chi(\omega)$
- Extinction coefficient: $\kappa(\omega) \equiv \text{Im}\sqrt{\varepsilon(\omega)}$
- Refractive index: $n(\omega) \equiv {\rm Re} \sqrt{\varepsilon(\omega)}$

Absorption spectroscopy monitors $\kappa(\omega) \approx \text{Im}\chi^{(1)}$.