Macroscopic Electrodynamics

Mike Reppert

September 14, 2020

Previously on CHM676...

The Inhomogeneous Wave Equation (IEW – derived from Maxwell's equations) can be used to calculate the EM field *given* particle trajectories.

Previously on CHM676...

The Inhomogeneous Wave Equation (IEW – derived from Maxwell's equations) can be used to calculate the EM field *given* particle trajectories.

But in general, the particle trajectories are impossibly hard to calculate!

Previously on CHM676...

The Inhomogeneous Wave Equation (IEW – derived from Maxwell's equations) can be used to calculate the EM field *given* particle trajectories.

But in general, the particle trajectories are impossibly hard to calculate!

Today: How to simplify the equations by *coarse-graining*.

Statistical Mechanics: Average Physics

Microstate

Macrostate

Statistical Mechanics: Average Physics

Ensemble Averages

Formally, we define the ensemble average

$$\langle f \rangle_M = \sum_{\mu \in M} p_\mu^{(M)} f(\mu)$$

as the average value over all microstates consistent with a specific macrostate (temperature, volume, charge, etc.).

Ensemble Averages

Formally, we define the ensemble average

$$\langle f \rangle_M = \sum_{\mu \in M} p_\mu^{(M)} f(\mu)$$

as the average value over all microstates consistent with a specific macrostate (temperature, volume, charge, etc.).

In spectroscopy, we work almost exclusively with the *macroscopic fields*

$$\boldsymbol{E}(\boldsymbol{x},t) \equiv \langle \boldsymbol{e}(\boldsymbol{x},t) \rangle_{M} \boldsymbol{B}(\boldsymbol{x},t) \equiv \langle \boldsymbol{b}(\boldsymbol{x},t) \rangle_{M} .$$

Macroscopic Fields

What equations determine E and B?

Macroscopic Fields

What equations determine E and B?

Since Maxwell's equations are linear in b and e:

$$\nabla \cdot \boldsymbol{E} = 4\pi \langle \varrho(\boldsymbol{x}, t) \rangle_M$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \frac{4\pi}{c} \langle \boldsymbol{j}(\boldsymbol{x}, t) \rangle_M$$

But how do we get rid of the explicit ensemble average? *Wait for it...*

Take-Home Points

In statistical mechanics, an *ensemble-averaged* quantity is the average value over all *microstates* consistent with a given *macrostate*.

In spectroscopy, we primarily deal with the *macroscopic* fields E and B – the ensemble averages of the *microsocpic* fields e and b.

Since Maxwell's equations are linear, their form is unchanged by ensemble-averaging. The key question is how to handle $\langle \varrho \rangle$ and $\langle j \rangle$.

Coarse-grained Densities

Coarse-graining the Densities

A two-step process:

(1) Distinguish between *free* and *bound* charges:

"bound" \approx "stuck to a nucleus"

Coarse-graining the Densities

A two-step process:

(1) Distinguish between *free* and *bound* charges: "bound" \approx "stuck to a nucleus"

(2) Multipole expansion in molecular size

- Monopole: Total charge
- Oipole: Polarization

https://en.wikipedia.org/wiki/File: Ball_and_stick_model_of_a_water_molecule.png

Macroscopic Densities

The result (after great suffering) is:

$$\begin{split} \langle \varrho(\boldsymbol{x},t)\rangle_{M} &\approx \rho(\boldsymbol{x},t) - \nabla \cdot \boldsymbol{P}(\boldsymbol{x},t) + \dots \\ \langle \boldsymbol{j}(\boldsymbol{x},t)\rangle_{M} &\approx \boldsymbol{J}(\boldsymbol{x},t) + \frac{\partial \boldsymbol{P}(\boldsymbol{x},t)}{\partial t} + \dots \end{split}$$

where

- ρ is the *free charge* density
- **P** is the *polarization* density
- J is the *free current* density

11 / 22

Coarse-grained Densities

Microscopic Charge Density: ϱ

How much total charge?

Free Charge Density: ρ

How much mobile charge?

Free Current Density: J

How much mobile charge movement?

Polarization Density: P

How much polarization?

 $\begin{array}{l} \boldsymbol{P}(\boldsymbol{x},t) \text{ is the average molecular dipole at } \boldsymbol{x} \text{:} \\ \boldsymbol{P}(\boldsymbol{x},t) \equiv \left\langle \mu^{\mathsf{mol}} \delta(\boldsymbol{x}-\boldsymbol{r}^{\mathsf{mol}}) \right\rangle_{M} \end{array}$

September 14, 2020

Read the Signs

	Microscopic	Macroscopic
Electric Field	e	E
Magnetic Field	b	B
Charge Density	Q	ρ
Current Density	j	J

< 行

э

Read the Signs

	Microscopic	Macroscopic
Electric Field	e	E
Magnetic Field	b	B
Charge Density	Q	ρ
Current Density	j	J

But watch out!

$oldsymbol{E}=\langleoldsymbol{e} angle$	$ ho eq \langle \varrho angle$
$oldsymbol{B}=\langle oldsymbol{b} angle$	$oldsymbol{J} eq \langle oldsymbol{j} angle$

Read the Signs

	Microscopic	Macroscopic
Electric Field	e	E
Magnetic Field	b	B
Charge Density	Q	ρ
Current Density	j	J

But watch out!

$oldsymbol{E}=\langleoldsymbol{e} angle$	$ ho eq \langle \varrho angle$
$oldsymbol{B}=\langle oldsymbol{b} angle$	$oldsymbol{J} eq \langle oldsymbol{j} angle$

$$\begin{split} \langle \varrho(\boldsymbol{x},t) \rangle_M &\approx \rho(\boldsymbol{x},t) - \nabla \cdot \boldsymbol{P}(\boldsymbol{x},t) + \dots \\ \langle \boldsymbol{j}(\boldsymbol{x},t) \rangle_M &\approx \boldsymbol{J}(\boldsymbol{x},t) + \frac{\partial \boldsymbol{P}(\boldsymbol{x},t)}{\partial t} + \dots \end{split}$$

Free charges can move over large distances

Bound charges are mostly stuck in place

The multipole expansion allows us to write $\langle \varrho \rangle_M$ and $\langle j \rangle_M$ in terms of *macroscopic quantities:*

- The free charge density ρ
- ullet The polarization density $oldsymbol{P}$
- ullet The free current density $oldsymbol{J}$

Molecular Spectroscopy and Material Polarization

Going Forward: Dielectric Materials

In this course we'll work with *dielectrics*: materials without free charges. *Whole molecules don't move very fast!*

19 / 22

Going Forward: Dielectric Materials

In this course we'll work with *dielectrics*: materials without free charges. *Whole molecules don't move very fast!*

In dielectrics, both ρ and \boldsymbol{J} vanish:

$$\nabla \cdot \boldsymbol{E} = -4\pi \nabla \cdot \boldsymbol{P}(\boldsymbol{x}, t)$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}(\boldsymbol{x}, t)}{\partial t}$$

For molecular spectroscopy, the *polarization density* is key.

Think about it!

Q: How does polarization contribute to $\langle \varrho \rangle_M$?

Think about it!

Q: How does polarization contribute to $\langle \varrho \rangle_M$?

A: It doesn't! It's $\nabla \cdot P!$

Molecular Spectroscopy and Material Polarization

Next up: Response Theory

< 行

3 N 3

Molecular Spectroscopy and Material Polarization

Next up: Response Theory

Mike Reppert

Take-Home Points

P doesn't contribute directly to $\langle \varrho \rangle_M$ or $\langle j \rangle_M$: It's $\nabla \cdot P$ and $\frac{\partial P}{\partial t}$ that contribute.

In macroscopic electrodynamics, *response theory* replaces the Lorentz force law in describing how materials respond to the EM field.