
Microscopic Electrodynamics

Mike Reppert

September 9, 2020

Mike Reppert Microscopic Electrodynamics 1 / 21 September 9, 2020 1 / 21



Previously on CHM676...

Lecture 1: Introduced Maxwell’s equations and the
Lorentz force law

Lecture 2: Solved Maxwell’s equations for EM fields
in vacuum

Lecture 3: Examined the energy content of EM fields
(via work on charged particles)

Lecture 4 (today): Solve Maxwell’s equations in the
presence of particles (sort of...)
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Why are we doing this?
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Outline for Today:

1 The Inhomogeneous Wave Equation

2 The Scalar and Vector Potentials

3 Near-field vs. Far-field
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The Inhomogeneous Wave Equation

The Inhomogeneous Wave Equation
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The Inhomogeneous Wave Equation

Homogeneous Wave Equation

In vacuum, we rearranged Maxwell’s equations

∇ · e = 0

∇ · b = 0

∇× e+ 1

c

∂b

∂t
= 0

∇× b− 1

c

∂e

∂t
= 0

to get the homogeneous wave equation (HWE):(
1

c2
∂2

∂t2
−∇2

)
e(x, t) = 0.
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The Inhomogeneous Wave Equation

Inhomogeneous Wave Equation

In the presence of charged particles

∇ · e = 4π%(x, t)

∇ · b = 0

∇× e+ 1

c

∂b

∂t
= 0

∇× b− 1

c

∂e

∂t
=

4π

c
j(x, t)

the same procedure yields the inhomogeneous wave equation (IWE):(
1

c2
∂2

∂t2
−∇2

)
e = −4π∇%− 4π

c2
∂j

∂t
.

Charges act as “sources” and “sinks” for the EM field!
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The Inhomogeneous Wave Equation

The Inhomogeneous Wave Equation

This equation can be solved explicitly, but
1 The solutions are very complicated and

2 They are dependent on the particle dynamics – which
are usually unknown.

Solving the IWE only gets us one way!
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The Inhomogeneous Wave Equation

Take-Home Points

Maxwell’s equations can be rearranged to produce the
inhomogeneous wave equation

The IWE can be solved – but we need to know the
particle dynamics before we can calculate field dy-
namics!

In practice, we need to approximate:

1 Assume the field is known and calculate
particle dynamics or

2 Assume the particle dynamics are known
and calculate the field
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The Scalar and Vector Potentials

The Scalar and Vector Potentials
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The Scalar and Vector Potentials

Solving the IWE

Explicit solutions to the IWE:

e(x, t) = −
∫
dx′∇′%(x′, τ)

‖x− x′‖
− 1

c2
∂

∂t

∫
dx′ j(x

′, τ)

‖x− x′‖

b(x, t) =
1

c

∫
dx′∇′ × j(x′, τ)

‖x− x′‖

with τ = t− 1

c
‖x− x′‖

x is where we observe the field

x′ runs over charge locations

The retarded time τ is when the
charge had to move for the signal to
reach Bob at time t

https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html
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The Scalar and Vector Potentials

The Scalar and Vector Potentials

The solutions to the IWE can be rewritten

e(x, t) = −∇φ(x, t)− 1

c

∂A

∂t
b(x, t) = ∇×A(x, t)

in terms of a scalar potential

φ(x, t) =

∫
dx′ %(x

′, t− 1
c‖x− x

′‖)
‖x− x′‖

and a vector potential

A(x, t) =
1

c

∫
dx′ j(x

′, t− 1
c‖x− x

′‖)
‖x− x′‖

.
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The Scalar and Vector Potentials

Gauge Transformations

But notice: A and φ are not unique! The replacement

A′ = A+∇f(x, t)

φ′ = φ− 1

c

∂f

∂t

leaves e and b unchanged: a gauge transformation.

Our definitions so far are in the Lorenz Gauge.
Also common is the Coulomb gauge where φ(x, t) is
just the electrostatic Coulomb potential.
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The Scalar and Vector Potentials

Take-Home Points

Solutions to the IWE can be written as integrals over
ρ and j evaluated at the retarded time τ and scaled
inversely by the distance from the observer to the
source charge.

These ρ and j integrals define the scalar potential
φ(x, t) and a vector potential A(x, t).

e and b are uniquely determined by A and φ but not
vice-versa – a gauge transformation changes A and
φ but leaves e and b the same.
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Near-field vs. Far-field

Near-field vs. Far-field
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Near-field vs. Far-field

Approximate Solutions

In practice, solutions to the IWE are too complicated to
be evaluated directly. The equations get easier in two
opposite regimes:

Near field

Far field
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Near-field vs. Far-field

Near-field Electrodynamics

At very short distances:

We can ignore retardation

φ dominates the e-field
(scaling!).

φC(x, t) =

∫
dx′ %(x

′, t)

‖x− x′‖

→
∑
n

qn
‖x− rn‖

.

Molecular Dynamics

http://www.yasara.org/mdreport/4mbs_report.html
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Near-field vs. Far-field

Far-field Electrodynamics

At very large distances:
The retarded time is nearly the same for all sources:
τr ≈ t− 1

c‖x− x0‖
The detailed locations of the charges don’t matter!

φ(x, t) ≈ qtot

r
+
r · µ̇(τr)
cr2

A(x, t) ≈ µ̇(τr)
cr

All determined by the total charge and dipole moment

µ(t) =
∑
n

qn (rn − x0)

relative to x0.

(More generally: Multipole expansion.)
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Near-field vs. Far-field

Far-field Electrodynamics

Near Field

Far Field
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Near-field vs. Far-field

Far-field Electrodynamics

Near Field Far Field
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Near-field vs. Far-field

Emission of Radiation

In the far-field

Oscillating dipoles produce
propagating waves

Everything looks like a
dipole!

Oscillating Dipole:

Oscillating charge distributions create propagating waves!

https://en.wikipedia.org/wiki/Antenna_(radio)
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Near-field vs. Far-field

Take-Home Points

Near-field regime:

Close to charge sources

Coulomb potential

Weak magnetic forces

Far-field regime:

Far from charge sources

Multipole expansion

Propagating waves
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