Nonlinear Response

Mike Reppert

October 5, 2020

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Linear response is the first-order term, characterized by the *susceptibility*

$$\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{i\omega\tau}.$$

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Linear response is the first-order term, characterized by the *susceptibility*

$$\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{\mathrm{i}\omega\tau}.$$

Absorption spectroscopy probes the imaginary part:

$$A(\omega) = \frac{4\pi\omega\ell}{cn(\omega)\ln 10} \mathrm{Im}\chi(\omega).$$

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Linear response is the first-order term, characterized by the *susceptibility*

$$\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{i\omega\tau}.$$

Absorption spectroscopy probes the imaginary part:

$$A(\omega) = \frac{4\pi\omega\ell}{cn(\omega)\ln 10} \mathrm{Im}\chi(\omega).$$

Today: Nonlinear response

Outline for Today:

2 The Longitudinal and Transverse Fields

3 The Rare Medium Approximation

э

In **nonlinear materials**, Maxwell's equations are *complicated*:

$$\nabla \cdot \boldsymbol{E} = -4\pi \nabla \cdot \boldsymbol{P}[\boldsymbol{E}]$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}[\boldsymbol{E}]}{\partial t}$$

In **nonlinear materials**, Maxwell's equations are *complicated*:

$$\nabla \cdot \boldsymbol{E} = -4\pi \nabla \cdot \boldsymbol{P}[\boldsymbol{E}]$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}[\boldsymbol{E}]}{\partial t}$$

We need perturbative methods!

Roughly speaking:

Probability of *n*-th order processes $\propto \frac{1}{n!} \left(\frac{\text{Rate of excitation}}{\text{Rate of de-excitation}} \right)^n$

Roughly speaking:

Probability of *n*-th order processes $\propto \frac{1}{n!} \left(\frac{\text{Rate of excitation}}{\text{Rate of de-excitation}} \right)^n$

In direct sunlight:

- Chlorophyll a gets excited 10 times/second
- Chlorophyll excited states live for 1 ns.
- **Q:** What's the probability of a nonlinear event?

Roughly speaking:

Probability of *n*-th order processes $\propto \frac{1}{n!} \left(\frac{\text{Rate of excitation}}{\text{Rate of de-excitation}} \right)^n$

In direct sunlight:

- Chlorophyll a gets excited 10 times/second
- Chlorophyll excited states live for 1 ns.
- **Q:** What's the probability of a nonlinear event? **A:** Roughly $10^{-16}(!)$

Roughly speaking:

Probability of *n*-th order processes $\propto \frac{1}{n!} \left(\frac{\text{Rate of excitation}}{\text{Rate of de-excitation}} \right)^n$

In direct sunlight:

- Chlorophyll a gets excited 10 times/second
- Chlorophyll excited states live for 1 ns.
- **Q:** What's the probability of a nonlinear event?

A: Roughly $10^{-16}(!)$

For most materials, nonlinear processes happen only at very high intensities!

Mike Reppert

To build a perturbation theory, define the *nonlinear polarization*

$$\boldsymbol{P}^{(\mathsf{NL})}(\boldsymbol{x},t) = \boldsymbol{P}(\boldsymbol{x},t) - \boldsymbol{P}^{(1)}(\boldsymbol{x},t).$$

To build a perturbation theory, define the *nonlinear polarization*

$$\boldsymbol{P}^{(\mathsf{NL})}(\boldsymbol{x},t) = \boldsymbol{P}(\boldsymbol{x},t) - \boldsymbol{P}^{(1)}(\boldsymbol{x},t).$$

Key Point: We can solve the *linear* equations exactly. Exact knowledge of $P^{(1)}(x, t)$ lets us study $P^{(NL)}(x, t)$ perturbatively.

Maxwell's Equations now become:

$$\nabla \cdot \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -4\pi \boldsymbol{P}^{(\mathsf{NL})}$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial}{\partial t} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}^{(\mathsf{NL})}}{\partial t}$$

Maxwell's Equations now become:

$$\nabla \cdot \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -4\pi \boldsymbol{P}^{(\mathsf{NL})}$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial}{\partial t} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}^{(\mathsf{NL})}}{\partial t}$$
$$\Downarrow$$
$$\nabla \left(\nabla \cdot \boldsymbol{E} \right) - \nabla^2 \boldsymbol{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -\frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \boldsymbol{P}^{(\mathsf{NL})}$$

Maxwell's Equations now become:

$$\nabla \cdot \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -4\pi \boldsymbol{P}^{(\mathsf{NL})}$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial}{\partial t} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}^{(\mathsf{NL})}}{\partial t}$$
$$\Downarrow$$
$$\nabla \left(\nabla \cdot \boldsymbol{E} \right) - \nabla^2 \boldsymbol{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -\frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \boldsymbol{P}^{(\mathsf{NL})}$$

It looks (sort of) like the wave equation - but it's not!

In **nonlinear media** We can't solve Maxwell's equations exactly – so we use a perturbation expansion!

The nonlinear polarization $P^{(NL)}$ is the part of the total polarization *not* captured by $P^{(1)}$.

The equation governing **nonlinear processes** looks something like the wave equation, but with a nonlinear source on the right-hand side.

The Longitudinal and Transverse Fields

The Helmholtz Decomposition

As usual, solutions are easier in k-space:

$$-\boldsymbol{k}\left(\boldsymbol{k}\cdot\tilde{\boldsymbol{E}}\right)+k^{2}\tilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}}\left(\tilde{\boldsymbol{E}}+4\pi\tilde{\boldsymbol{P}}^{(1)}\right)=\frac{4\pi\omega^{2}}{c^{2}}\tilde{\boldsymbol{P}}^{(\mathrm{NL})}$$

The Helmholtz Decomposition

As usual, solutions are easier in k-space:

$$-\boldsymbol{k}\left(\boldsymbol{k}\cdot\tilde{\boldsymbol{E}}\right)+k^{2}\tilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}}\left(\tilde{\boldsymbol{E}}+4\pi\tilde{\boldsymbol{P}}^{(1)}\right)=\frac{4\pi\omega^{2}}{c^{2}}\tilde{\boldsymbol{P}}^{(\mathrm{NL})}.$$

Now decompose the field as the sum $ilde{E} = ilde{E}_{\parallel} + ilde{E}_{\perp}$ of two components

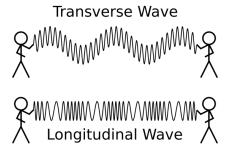
$$\begin{split} \tilde{\pmb{E}}_{\parallel}(\pmb{k},\omega) &= \pmb{k} \frac{\pmb{k} \cdot \tilde{\pmb{E}}(\pmb{k},\omega)}{k^2} \quad \leftarrow \quad \text{Longitudinal Field} \\ \tilde{\pmb{E}}_{\perp}(\pmb{k},\omega) &= -\frac{\pmb{k} \times \left(\pmb{k} \times \tilde{\pmb{E}}(\pmb{k},\omega)\right)}{k^2} \quad \leftarrow \quad \text{Transverse Field.} \end{split}$$

At any point in $m{k}$ -space, $ilde{m{E}}_{\parallel}$ is parallel to $m{k}$, and $ilde{m{E}}_{\perp}$ is perpendicular!

Longitudinal vs. Transverse fields

Loosely speaking:

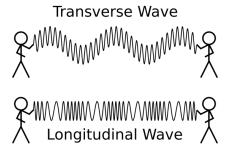
- Longitudinal fields are polarized along their propagation axis
- Transverse fields are polarized perpendicular to propagation axis



Longitudinal vs. Transverse fields

Loosely speaking:

- Longitudinal fields are polarized along their propagation axis
- Transverse fields are polarized perpendicular to propagation axis



The Longitudinal and Transverse Fields

Vacuum Waves: Longitudinal Or Transverse?

In vacuum MEs support only

fields.

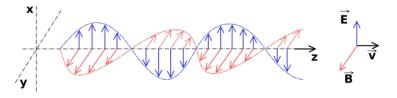
Vacuum Waves: Longitudinal Or Transverse?

In vacuum MEs support only transverse fields.

Vacuum Waves: Longitudinal Or Transverse?

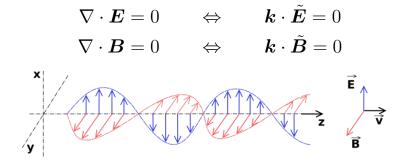
In vacuum MEs support only transverse fields.

$$\nabla \cdot \boldsymbol{E} = 0 \qquad \Leftrightarrow \qquad \boldsymbol{k} \cdot \boldsymbol{E} = 0$$
$$\nabla \cdot \boldsymbol{B} = 0 \qquad \Leftrightarrow \qquad \boldsymbol{k} \cdot \tilde{\boldsymbol{B}} = 0$$



Vacuum Waves: Longitudinal Or Transverse?

In vacuum MEs support only transverse fields.



Longitudinal fields can exist only in matter! \Rightarrow not usually relevant to spectroscopy.

The Longitudinal and Transverse Fields

The Longitudinal and Transverse Fields

The HD splits one equation into two:

Looks like we could *almost* solve this. **But**: $\tilde{P}_{\parallel}^{(NL)}$ and $\tilde{P}_{\perp}^{(NL)}$ depend on the *total field*!

- Both equations are nonlinear.
- The equations are coupled.

The **Helmholz Decomposition** splits the EM field into *longitudinal* and *transverse* components.

The longitudinal field E_{\parallel} is polarized *along* its propagation axis.

The transverse field E_{\perp} is polarized *perpendicular* to its propagation axis.

In vacuum MEs support only transverse fields.

In matter ME + HD gives a pair of coupled nonlinear equations that we cannot solve directly...

In **isotropic materials**, the problem is solved definitively by the *rare medium approximation*.

In **isotropic materials**, the problem is solved definitively by the *rare medium approximation*. Let

$$oldsymbol{E} = oldsymbol{E}_{\mathsf{ext}} + oldsymbol{E}^{(1)} + oldsymbol{E}^{(\mathsf{NL})},$$

where

- E is the total field
- E_{ext} is the field without the material
- $E_{\text{ext}} + E^{(1)}$ is the solution to Maxwell's equations under linear response .

Key Point: The linear field $E_{ext} + E^{(1)}$ is *exactly* solvable and, for most systems, dominates the response.

Key Point: The linear field $E_{ext} + E^{(1)}$ is *exactly* solvable and, for most systems, dominates the response.

This suggests an approximation:

$$oldsymbol{P}^{(\mathsf{NL})}[oldsymbol{E}] pprox oldsymbol{P}^{(\mathsf{NL})}\left[oldsymbol{E}_{\mathsf{ext}} + oldsymbol{E}^{(1)}
ight],$$

Key Point: The linear field $E_{ext} + E^{(1)}$ is *exactly* solvable and, for most systems, dominates the response.

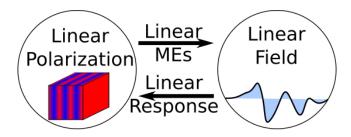
This suggests an approximation:

$$oldsymbol{P}^{(\mathsf{NL})}[oldsymbol{E}] pprox oldsymbol{P}^{(\mathsf{NL})}\left[oldsymbol{E}_{\mathsf{ext}} + oldsymbol{E}^{(1)}
ight],$$

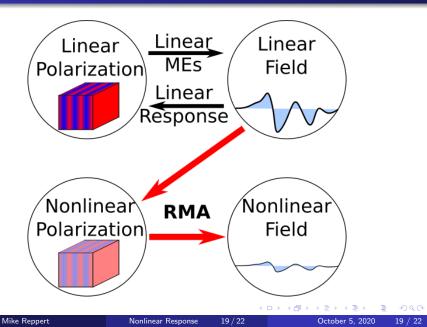
Now the nonlinear response is simply a *knowable* functional of a *known* quantity – this can be solved exactly!

18 / 22

The Rare Medium Approximation



The Rare Medium Approximation



The Longitudinal Field

This makes life much better.

Under the RMA, the equation for \tilde{E}_{\parallel} is *algebraic*:

$$ilde{m{E}}_{\parallel}^{(\mathsf{NL})} = -4\pi ilde{m{P}}_{\parallel}^{(\mathsf{NL})} \left[ilde{m{E}}_{\mathsf{ext}} + ilde{m{E}}^{(1)}
ight].$$

The field is non-zero only where the polarization is non-zero.

The Longitudinal Field

This makes life much better.

Under the RMA, the equation for \tilde{E}_{\parallel} is *algebraic*:

$$ilde{m{E}}_{\parallel}^{(\mathsf{NL})} = -4\pi ilde{m{P}}_{\parallel}^{(\mathsf{NL})} \left[ilde{m{E}}_{\mathsf{ext}} + ilde{m{E}}^{(1)}
ight].$$

The field is non-zero only where the polarization is non-zero.

 \Rightarrow The longitudinal field vanishes outside the sample.

The Longitudinal Field

This makes life much better.

Under the RMA, the equation for \tilde{E}_{\parallel} is *algebraic*:

$$ilde{m{E}}_{\parallel}^{(\mathsf{NL})} = -4\pi ilde{m{P}}_{\parallel}^{(\mathsf{NL})} \left[ilde{m{E}}_{\mathsf{ext}} + ilde{m{E}}^{(1)}
ight].$$

The field is non-zero only where the polarization is non-zero.

 \Rightarrow The longitudinal field vanishes outside the sample. \Rightarrow The longitudinal polarization does not radiate!

The Transverse Field

The **transverse field** follows the inhomogeneous wave equation, with the nonlinear polarization as a source:

$$\left(k^2 - \frac{\omega^2}{c^2}\varepsilon(\omega)\right)\tilde{\boldsymbol{E}}_{\perp}^{(\mathrm{NL})} = \frac{4\pi\omega^2}{c^2}\tilde{\boldsymbol{P}}_{\perp}^{(\mathrm{NL})}\left[\tilde{\boldsymbol{E}}_{\mathrm{ext}} + \tilde{\boldsymbol{E}}^{(1)}\right].$$

The Transverse Field

The **transverse field** follows the inhomogeneous wave equation, with the nonlinear polarization as a source:

$$\left(k^2 - \frac{\omega^2}{c^2}\varepsilon(\omega)\right)\tilde{\boldsymbol{E}}_{\perp}^{(\mathrm{NL})} = \frac{4\pi\omega^2}{c^2}\tilde{\boldsymbol{P}}_{\perp}^{(\mathrm{NL})}\left[\tilde{\boldsymbol{E}}_{\mathrm{ext}} + \tilde{\boldsymbol{E}}^{(1)}\right].$$

The transverse field radiates! In isotropic media, *the transverse field drives all nonlinear processes*!

In most materials, the **nonlinear response** is much weaker than the *linear response*.

Under the rare medium approximation:

• The linear equations are solved exactly

In most materials, the **nonlinear response** is much weaker than the *linear response*.

Under the rare medium approximation:

- The linear equations are solved exactly
- The *linear* field induces a *nonlinear* polarization

In most materials, the **nonlinear response** is much weaker than the *linear response*.

Under the rare medium approximation:

- The linear equations are solved exactly
- The *linear* field induces a *nonlinear* polarization
- The *transverse nonlinear polarization* acts as a source for the radiated *transverse nonlinear field*

22 / 22