Mike Reppert

October 21, 2020

| N 411  | D   |      |      |
|--------|-----|------|------|
| IVIIKE | Rei | nnei | in t |
|        |     | ppe  |      |

#### We learned about pump-probe spectroscopy:

• Setup:



- Setup:
  - Two pulsed lasers cross in a sample



- Setup:
  - Two pulsed lasers cross in a sample
  - $\Delta OD =$  "pump on" "pump off"



- Setup:
  - Two pulsed lasers cross in a sample
  - $\Delta OD =$  "pump on" "pump off"
- Third-order process



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"
- Third-order process
  - Two interactions with "pump" pulse



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"

# • Third-order process

- Two interactions with "pump" pulse
- One interaction with "probe" pulse



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"

# Third-order process

- Two interactions with "pump" pulse
- One interaction with "probe" pulse



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"

## Third-order process

- Two interactions with "pump" pulse
- One interaction with "probe" pulse

#### • Two pathways:

• Rephasing:  $-k_1 + k_2 + k_3$ 



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"

## Third-order process

- Two interactions with "pump" pulse
- One interaction with "probe" pulse

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"

## Third-order process

- Two interactions with "pump" pulse
- One interaction with "probe" pulse

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"
- Third-order process
  - Two interactions with "pump" pulse
  - One interaction with "probe" pulse

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:
  - Does not oscillate at high frequencies



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"
- Third-order process
  - Two interactions with "pump" pulse
  - One interaction with "probe" pulse

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:
  - Does not oscillate at high frequencies
  - Monitors dissipation



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"
- Third-order process
  - Two interactions with "pump" pulse
  - One interaction with "probe" pulse

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:
  - Does not oscillate at high frequencies
  - Monitors dissipation
  - Not sensitive to dephasing



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"
- Third-order process
  - Two interactions with "pump" pulse
  - One interaction with "probe" pulse

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:
  - Does not oscillate at high frequencies
  - Monitors dissipation
  - Not sensitive to dephasing



We learned about pump-probe spectroscopy:

# • Setup:

- Two pulsed lasers cross in a sample
- $\Delta OD =$  "pump on" "pump off"
- Third-order process
  - Two interactions with "pump" pulse
  - One interaction with "probe" pulse

## • Two pathways:

- Rephasing:  $-k_1 + k_2 + k_3$
- Nonrephasing:  $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:
  - Does **not** oscillate at high frequencies
  - Monitors dissipation
  - Not sensitive to dephasing

# Today: 2D Spectroscopy!



# Pump-probe signal is determined by integrating $\mathbf{R}^{(3)}(\pm\omega_1,0,\omega)$ over $\omega_1$ :

$$S^{(\mathsf{pp})}(\omega) \propto \varepsilon_{\mathsf{pump}}^2 \varepsilon_{\mathsf{probe}} \int d\omega_1 \left[ \tilde{R}_{yyyy}^{(3)}(-\omega_1, 0, \omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1, 0, \omega) \right].$$

# Pump-probe signal is determined by integrating $\mathbf{R}^{(3)}(\pm\omega_1,0,\omega)$ over $\omega_1$ :

$$S^{(\mathsf{pp})}(\omega) \propto \varepsilon_{\mathsf{pump}}^2 \varepsilon_{\mathsf{probe}} \int d\omega_1 \left[ \tilde{R}^{(3)}_{yyyy}(-\omega_1, 0, \omega) + \tilde{R}^{(3)}_{yyyy}(\omega_1, 0, \omega) \right].$$

Wouldn't it be great if we could measure  $\mathbf{R}^{(3)}(\omega_1, 0, \omega)$ without integrating over the first interaction frequency?

# Pump-probe signal is determined by integrating $\mathbf{R}^{(3)}(\pm\omega_1,0,\omega)$ over $\omega_1$ :

$$S^{(\mathsf{pp})}(\omega) \propto \varepsilon_{\mathsf{pump}}^2 \varepsilon_{\mathsf{probe}} \int d\omega_1 \left[ \tilde{R}^{(3)}_{yyyy}(-\omega_1, 0, \omega) + \tilde{R}^{(3)}_{yyyy}(\omega_1, 0, \omega) \right].$$

Wouldn't it be great if we could measure  $\mathbf{R}^{(3)}(\omega_1, 0, \omega)$ without integrating over the first interaction frequency?

We can! 2D spectroscopy gives (in principle) the **full** third-order response tensor.

#### **2D Spectroscopy:** "Threepulse pump-probe"

• **Key Idea:** By scanning the time delay *between* the first two interactions, we get **excitation** frequency information



| Mike   | Ren  | nert |
|--------|------|------|
| IVIINC | rich | perc |

#### **2D Spectroscopy:** "Threepulse pump-probe"

- **Key Idea:** By scanning the time delay *between* the first two interactions, we get **excitation** frequency information
- Setup: Two common geometries



| Mike Rep | pert |
|----------|------|
|----------|------|

#### **2D Spectroscopy:** "Threepulse pump-probe"

- **Key Idea:** By scanning the time delay *between* the first two interactions, we get **excitation** frequency information
- Setup: Two common geometries
  - Pump-probe



#### **2D Spectroscopy:** "Threepulse pump-probe"

- **Key Idea:** By scanning the time delay *between* the first two interactions, we get **excitation** frequency information
- Setup: Two common geometries
  - Pump-probe
  - Box-CARS



#### **2D Spectroscopy:** "Threepulse pump-probe"

- **Key Idea:** By scanning the time delay *between* the first two interactions, we get **excitation** frequency information
- Setup: Two common geometries
  - Pump-probe
  - Box-CARS
- **Applications:** By directly resolving **both** excitation **and** response, we can directly monitor energy-transfer dynamics



Fuller and Ogilvie, Ann. Rev. Phys. Chem., 2015 66, 667-690

#### Flavors of 2D Spectroscopy

Double Quantum Coherence:

Beats at  $2\omega_o$  and decays with dissipation in  $\tau_2$ : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$



#### Flavors of 2D Spectroscopy

Double Quantum Coherence:

Beats at  $2\omega_o$  and decays with dissipation in  $\tau_2$ : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

#### Nonrephasing:

Decays with *dissipation* in  $\tau_2$ : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3$$





#### Flavors of 2D Spectroscopy

Double Quantum Coherence:

Beats at  $2\omega_o$  and decays with dissipation in  $\tau_2$ : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

#### Nonrephasing:

Decays with *dissipation* in  $\tau_2$ : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3$$

Rephasing (photon echo): Decays with *dissipation* in  $\tau_2$ : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = -\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3$$





#### 2D Correlation Spectrum: One oscillator

# **2D Correlation Spectrum** = Rephasing + Nonrephasing surfaces. Directly measured in pump-probe geometry.

#### 2D Correlation Spectrum: One oscillator

**2D Correlation Spectrum** = Rephasing + Nonrephasing surfaces. Directly measured in pump-probe geometry.

- $(\omega_1, \omega_3) =$  (Excitation, Detection)
- Diagonal width feels both homogeneous and inhomogeneous broadening
- Anti-diagonal width feels only homogeneous broadening
- $\tau_2$  feels dissipation **not** dephasing

#### Homogeneous





イロト イヨト イヨト

- ∢ ⊒ →

э



• • • • • • • • • •

æ



・ロト ・日下 ・ヨト

э



 Frequency probed by pulse 3 depends on *time delay* between 1 & 2 → Signal



- Frequency probed by pulse 3 depends on *time delay* between 1 & 2 → Signal
- Excitation of one mode alters frequencies of coupled modes → Cross peaks



- Frequency probed by pulse 3 depends on *time delay* between 1 & 2 → Signal
- Excitation of one mode alters frequencies of coupled modes → Cross peaks
- Interference between different modes  $\rightarrow$  "Quantum" beats

#### 2D Correlation Spectra: Two Oscillators

**Cross-peaks** in 2D spectra indicate site-to-site **coupling** and **energy transfer**.



**Cross-peaks** in 2D spectra indicate site-to-site **coupling** and **energy transfer**.



#### **Classical Interpretation:**

**Cross-peaks** in 2D spectra indicate site-to-site **coupling** and **energy transfer**.



**Classical Interpretation: TBD** 

| A 411 | <b>D</b> |   |
|-------|----------|---|
| Wike  | Renner   | t |
|       | . cppc.  | Ľ |

**2D Spectroscopy** is a generalization of pump-probe spectroscopy, where both **excitation** and **detection** frequencies are resolved.

Four basic types of 2D spectrum:

- Double-Quantum Coherence
- Nonrephasing
- Rephasing
- Correlation = R + NR

**Diagonal** vs. **Antidiagonal** linewidths distinguish homogeneous and inhomogeneous broadening

Cross-peaks indicate coupling and energy transfer