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Previously on CHM676...

The density matrix

ρ̂ ≡ 1

N

N∑
n=1

|ψn〉 〈ψn|

accounts for both quantum and classical uncertainty in experimental
measurements. Its dynamics follow the quantum Liouville equation

i~
dρ

dt
=
[
Ĥ, ρ

]
,

the mixed state (ensemble) equivalent of the Schrödinger equation. In the
eigenbasis of a static Hamiltonian, density matrix elements evolve as

ρmn(t) = e−iωmntρmn(0).

Today: Time-dependent Perturbation Theory
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Two Approaches to Ensemble Dynamics

Static Hamiltonian: Hilbert Space Dynamics

The time-dependent Schrödinger equation

d

dt
|ψ〉 = − i

~
Ĥ |ψ〉

can be solved formally solved (check it!) as

|ψ(t)〉 = e−
i
~ Ĥt |ψ(0)〉 .

Here e−
i
~Ĥt is the operator exponential

e−
i
~ Ĥt =

∞∑
n=0

(
− it
~

)n Ĥn

n!
.

NB: By extension, the density matrix must follow

ρ̂(t) ≡
∑
n

|ψn(t)〉 〈ψn(t)| =
(
e−

i
~ Ĥt
)
ρ̂(0)

(
e

i
~ Ĥt
)
.
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Two Approaches to Ensemble Dynamics

Static Hamiltonian: Liouville-Space Solution

In exactly the same way, the Liouville equation is
formally solved (check it!) by the expansion

ρ̂(t) = ρ̂(0) +
t

i~

[
Ĥ, ρ̂(0)

]
+

t2

2(i~)2

[
Ĥ,
[
Ĥ, ρ̂(0)

]]
+ ...

=

∞∑
n=0

(−it)n

n!

1

~n
[
Ĥ, ...,

[
Ĥ, ρ̂(0)

]
...
]

≡ e−iL̂tρ̂(0)

=
(
e−

i
~ Ĥt
)
ρ̂(0)

(
e

i
~ Ĥt
)

where

L̂ ≡ 1

~

[
Ĥ,

]
is the Liouvillian superoperator.
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Two Approaches to Ensemble Dynamics

Superoperators

So what the heck is a superoperator?

A superoperator maps operators to other operators –
just like operators map vectors to other vectors.

Why superoperators?

Con: A new layer of abstraction

Pro: Drastically simplify many
quantum dynamics calculations.

Key Point: Superoperators are
“operator operators”! Anything
(almost) you can do with oper-
ators (exponentiation, differentia-
tion, integration, etc.), you can
also do with superoperators.

Mike Reppert
A Microscopic Treatment of Response Theory

6 / 24 October 30, 2020 6 / 24



Two Approaches to Ensemble Dynamics

Superoperators

So what the heck is a superoperator?

A superoperator maps operators to other operators –
just like operators map vectors to other vectors.

Why superoperators?

Con: A new layer of abstraction

Pro: Drastically simplify many
quantum dynamics calculations.

Key Point: Superoperators are
“operator operators”! Anything
(almost) you can do with oper-
ators (exponentiation, differentia-
tion, integration, etc.), you can
also do with superoperators.

Mike Reppert
A Microscopic Treatment of Response Theory

6 / 24 October 30, 2020 6 / 24



Two Approaches to Ensemble Dynamics

Superoperators

So what the heck is a superoperator?

A superoperator maps operators to other operators –
just like operators map vectors to other vectors.

Why superoperators?

Con: A new layer of abstraction

Pro: Drastically simplify many
quantum dynamics calculations.

Key Point: Superoperators are
“operator operators”! Anything
(almost) you can do with oper-
ators (exponentiation, differentia-
tion, integration, etc.), you can
also do with superoperators.

Mike Reppert
A Microscopic Treatment of Response Theory

6 / 24 October 30, 2020 6 / 24



Two Approaches to Ensemble Dynamics

Superoperators

So what the heck is a superoperator?

A superoperator maps operators to other operators –
just like operators map vectors to other vectors.

Why superoperators?

Con: A new layer of abstraction

Pro: Drastically simplify many
quantum dynamics calculations.

Key Point: Superoperators are
“operator operators”! Anything
(almost) you can do with oper-
ators (exponentiation, differentia-
tion, integration, etc.), you can
also do with superoperators.

Mike Reppert
A Microscopic Treatment of Response Theory

6 / 24 October 30, 2020 6 / 24



The Interaction Picture

The Interaction Picture
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The Interaction Picture

Time-dependent Perturbation Theory

In spectroscopy, we deal with a Hamiltonian of the form

Ĥ(t) = Ĥo − E(t) · µ̂
⇑ ⇑ ⇑

Matter Field-Dipole

The Liouville super-operator has the form

L̂(t) = L̂o + L̂E(t).

When E(t) = 0, we know the dynamics. Can we build a
perturbative expansion in E(t)?
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The Interaction Picture

The Interaction Representation

Define an interaction picture density matrix:

ρ̂I(t) ≡ eiL̂otρ̂(t),

where

L̂o ≡
1

~

[
Ĥo,

]
.

Note that if E(t) = 0, then ρ̂I is constant in time since

eiL̂ote−iL̂ot = 1̂.

Big idea: ρ̂I evolves only due to E(t) – so we can
expand perturbatively in increasing powers of E.
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The Interaction Picture

Interaction Picture Liouville Equation

How does ρ̂I(t) evolve in time?

Well...

dρ̂I
dt

=

(
d

dt
eiL̂ot

)
ρ̂(t) + eiL̂ot

(
d

dt
ρ̂(t)

)
= iL̂oeiL̂otρ̂(t) + eiL̂ot − ieiL̂ot

(
L̂o + L̂E(t)

)
ρ̂(t)

= −ieiL̂otL̂E(t)ρ̂(t)

= −ieiL̂otL̂E(t)e−iL̂oteiL̂otρ̂(t)

= −iL̂(I)E (t)ρ̂I(t),

where

L̂(I)E (t) = eiL̂otL̂E(t)e−iL̂ot.

ρ̂I(t) follows a Liouville equation determined by L̂(I)
E (t)!
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The Interaction Picture

The Interaction-Picture Propagator

Let’s look at L̂(I)
I (t) in a little more detail:

L̂(I)E (t)ρ̂ ≡ eiL̂otL̂E(t)e−iL̂otρ̂

= eiL̂otL̂E(t)
(
e−iĤotρ̂eiĤot

)
= eiL̂ot

[
(−E(t) · µ̂)

(
e−iĤotρ̂eiĤot

)
−
(
e−iĤotρ̂eiĤot

)
(−E(t) · µ̂)

]
=
(
−E(t) · eiĤotµ̂e−iĤot

)
ρ̂− ρ̂

(
−E(t) · eiĤotµ̂eiĤot

)
= −E(t) · µ̂(I)(t)ρ̂− ρ̂

(
−E(t) · µ̂(I)(t)

)
.

L̂(I)
E (t) just represents the commutator with the

interaction picture light-matter Hamiltonian

−E(t) · µ̂(I)(t) ≡ −E(t) · eiĤotµ̂eiĤot.
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The Interaction Picture

Interaction Picture Observables

How do we calculate observables?
Trick: The trace is invariant under cyclic permutations

Tr{ÂB̂} =
∑
n

〈
n
∣∣∣ÂB̂∣∣∣n〉

=
∑
n,m

〈
n
∣∣∣Â∣∣∣m〉〈m ∣∣∣B̂∣∣∣n〉

=
∑
n,m

〈
m
∣∣∣B̂∣∣∣n〉〈n ∣∣∣Â∣∣∣m〉 = Tr{B̂Â}.

Thus

〈A〉 = Tr
{
Âe−

i
~ L̂otρ̂I(t)

}
= Tr

{
Âe−

i
~ ĤotρI(t)e

i
~ Ĥot

}
= Tr

{
e

i
~ ĤotÂe−

i
~ ĤotρI(t)

}
= Tr

{
Â(I)(t)ρ̂I(t)

}
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Âe−

i
~ L̂otρ̂I(t)

}
= Tr

{
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The Interaction Picture

A picture is worth a thousand expansion terms

What’s happening in the “interaction picture”?

Suppose you want to calculate
fuel requirements for a Chicago-Sau
Paulo flight. Which representation
do you use?

Sun frame: Both targets move
at ∼1000 MPH

Earth frame: Earth’s rotation
is already incorporated – all
motion due to engines

The interaction picture is like
the Earth frame: Natural molecu-
lar motion is already included. All
dynamics are induced by the field.
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The Dyson Expansion

The Dyson Expansion
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The Dyson Expansion

The Dyson Expansion

Formally, we can solve the dynamics exactly:

d

dt
ρ̂I = −iL̂(I)E (t)

⇓

ρ̂I(t) = ρ̂I(0)− i
∫ t

0
dsL̂(I)E (s)ρ̂I(s)

⇓

ρ̂I(t) = ρ̂I(0)− i
∫ t

0
dsL̂(I)E (s)

(
ρ̂I(0)− i

∫ t

0
ds′L̂(I)E (s′)ρ̂I(s

′)

)
⇓

ρ̂I(t) =
∞∑
n=0

(−i)n
∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1

× L̂(I)E (tn)L̂(I)E (tn−1)...L̂(I)E (t1)ρ̂(0).
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The Dyson Expansion

Notation: Time-Ordered Exponentials

This solution is often termed a time-ordered exponential.

ρ̂I(t) =

∞∑
n=0

(−i)n
∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1

× L̂(I)E (tn)L̂(I)E (tn−1)...L̂(I)E (t1)ρ̂(0)

≡ exp[+]

(
−i
∫ ∞
0

dsL̂(I)E (s)

)
ρ̂I(0)

≡ T̂ e−i
∫∞
0 dsL̂(I)E (s)ρI(0)

Why? Note that if L̂(I)
E (t) were static:

ρ̂I(t) =

∞∑
n=0

(−it)n

n!
L̂(I)E L̂

(I)
E ...L̂(I)E ρ̂(0) ≡ e−iL̂

(I)
E tρ̂I(0).
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The Dyson Expansion

How do we calculate observables?

For observable averages:

〈A〉 = Tr{Â(I)(t)ρ̂I(t)}

=

∞∑
n=0

(−i)n
∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1

× Tr
{
Â(I)(t)L̂(I)E (tn)L̂(I)E (tn−1)...L̂(I)E (t1)ρ̂(0)

}
This looks a lot – but not quite! – like response theory.
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Response Theory

Response Theory
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Response Theory

Response Theory

Four steps to response theory:

Switch to time-intervals τn between interactions
instead of absolute times tn of interactions

Assume the system starts at equilibrium

Expand the propagators

Shift the time axis using time-translation invariance
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Response Theory

Step 1: Time intervals

To match response theory, we need to work in time
intervals τn instead of absolute times tn:

τn = t− tn
τn−1 = tn − tn−1

...

τ1 = t2 − t1.

Changing the integration variables:

〈A〉 =
∞∑
n=0

in
∫ t

0
dτn

∫ t−τn

0
dτn−1...

∫ t−τn−...−τ2

0
dτ1

× Tr
{
Â(I)(t)L̂(I)E (t− τn)...L̂(I)E (t− τn...− τ1)ρ̂(0)

}
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Response Theory

Step 2: Initialize at Equilibrium

Next, assume that the system begins at equilibrium, i.e.

L̂(I)
E (t) = 0 for t < 0

ρ̂(0) = ρ̂eq

This lets us extend integration limits to ∞:

〈A〉 =

∞∑
n=0

in
∫ t

0
dτn

∫ t−τn

0
dτn−1...

∫ t−τn−...−τ2

0
dτ1

× Tr
{
Â(I)(t)L̂(I)E (t− τn)...L̂(I)E (t− τn...− τ1)ρ̂(0)

}
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Â(I)(t)L̂(I)E (t− τn)...L̂(I)E (t− τn...− τ1)ρ̂(0)

}

Mike Reppert
A Microscopic Treatment of Response Theory

21 / 24 October 30, 2020 21 / 24



Response Theory

Step 2: Initialize at Equilibrium

Next, assume that the system begins at equilibrium, i.e.

L̂(I)
E (t) = 0 for t < 0

ρ̂(0) = ρ̂eq

This lets us extend integration limits to ∞:

〈A〉 =

∞∑
n=0

in
∫ ∞
0

dτn

∫ ∞
0

dτn−1...

∫ ∞
0

dτ1

× Tr
{
Â(I)(t)L̂(I)E (t− τn)...L̂(I)E (t− τn − ...− τ1)ρ̂eq

}

Mike Reppert
A Microscopic Treatment of Response Theory

21 / 24 October 30, 2020 21 / 24



Response Theory

Step 3: Expand the propagators

Now expand the propagators and factor out the field:

〈A〉 =

∞∑
n=0

(
i

~

)n ∑
α1,...,αn

∫ ∞
0

dτn...

∫ ∞
0

dτ1

× Eαn(t− τn)...Eα1(t− τn − ...− τ1)

× Tr
{
Â(I)(t)

[
µ̂(I)αn

(t− τn), ...
[
µ̂(I)α1

(t− τn − ...− τ1), ρ̂eq
]]}

Looks like response expansion except that “response
function” depends on t!
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Response Theory

Step 4: Shift the Time axis

Note that we can shift the time axis at will:

Tr{X̂(I)
1 (s1)X

(I)
2 (s2)...X

(I)
n (sn)}

= Tr{e
i
~ Ĥoτe−

i
~ Ĥoτ X̂

(I)
1 (s1)...e

i
~ Ĥoτe−

i
~ Ĥoτ X̂(I)

n (sn)}

= Tr{e−
i
~ Ĥoτ X̂

(I)
1 (s1)e

i
~ Ĥoτ ...e−

i
~ Ĥoτ X̂(I)

n (sn)e
i
~ Ĥoτ}

= Tr
{
X̂

(I)
1 (s1−τ)...X̂(I)

n (sn−τ)
}
.

Shifting the time axis by τ1 + ...+ τn − t gives:

〈A〉 =
∞∑
n=0

(
i

~

)n ∑
α1,...,αn

∫ ∞
0

dτn...

∫ ∞
0

dτ1

× Eαn(t− τn)...Eα1(t− τn − ...− τ1)

× Tr
{
Â(I)(τ1 + ...+ τ3)

[
µ̂(I)αn

(τ1 + ...+ τn−1), ...
[
µ̂(I)α1

(0), ρ̂eq

]]}
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Response Theory

Response Theory: A Microscopic Expression

Finally, since P (t) = 〈µ(t)〉:

P (t) =

∞∑
n=0

(
i

~

)n ∑
α1,...,αn

∫ ∞
0

dτn...

∫ ∞
0

dτ1

× Eαn(t− τn)...Eα1(t− τn − ...− τ1)

× Tr
{
µ̂(I)(τ1 + ...+ τn)

[
µ̂(I)αn

(τ1 + ...+ τn−1), ...
[
µ̂(I)α1

(0), ρ̂eq

]]}
.

Comparing with our generic response-theory expansion:

R(n)
α1...αnα(τ1, ..., τn) = Θ(τ1)Θ(τ2)...Θ(τn)

(
i

~

)n
× Tr

{
µ̂(I)α (τ1 + ...+ τn)

[
µ̂(I)αn

(τ1 + ...+ τn−1), ...
[
µ̂(I)α1

(0), ρ̂eq

]]}
.
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