A Microscopic Treatment of Response Theory

Mike Reppert

October 30, 2020

Previously on CHM676...

The density matrix

$$
\hat{\rho} \equiv \frac{1}{N} \sum_{n=1}^{N}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|
$$

accounts for both quantum and classical uncertainty in experimental measurements. Its dynamics follow the quantum Liouville equation

$$
i \hbar \frac{d \rho}{d t}=[\hat{H}, \rho]
$$

the mixed state (ensemble) equivalent of the Schrödinger equation. In the eigenbasis of a static Hamiltonian, density matrix elements evolve as

$$
\rho_{m n}(t)=e^{-i \omega_{m n} t} \rho_{m n}(0) .
$$

Previously on CHM676...

The density matrix

$$
\hat{\rho} \equiv \frac{1}{N} \sum_{n=1}^{N}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|
$$

accounts for both quantum and classical uncertainty in experimental measurements. Its dynamics follow the quantum Liouville equation

$$
i \hbar \frac{d \rho}{d t}=[\hat{H}, \rho]
$$

the mixed state (ensemble) equivalent of the Schrödinger equation. In the eigenbasis of a static Hamiltonian, density matrix elements evolve as

$$
\rho_{m n}(t)=e^{-i \omega_{m n} t} \rho_{m n}(0) .
$$

Today: Time-dependent Perturbation Theory

Two Approaches to Ensemble Dynamics

Static Hamiltonian: Hilbert Space Dynamics

The time-dependent Schrödinger equation

$$
\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \hat{H}|\psi\rangle
$$

can be solved formally solved (check it!) as

$$
|\psi(t)\rangle=e^{-\frac{i}{\hbar} \hat{H} t}|\psi(0)\rangle .
$$

Here $e^{-\frac{i}{\hbar} \hat{H} t}$ is the operator exponential

$$
e^{-\frac{i}{\hbar} \hat{H} t}=\sum_{n=0}^{\infty}\left(-\frac{i t}{\hbar}\right)^{n} \frac{\hat{H}^{n}}{n!} .
$$

NB: By extension, the density matrix must follow

$$
\hat{\rho}(t) \equiv \sum_{n}\left|\psi_{n}(t)\right\rangle\left\langle\psi_{n}(t)\right|=\left(e^{-\frac{i}{\hbar} \hat{H} t}\right) \hat{\rho}(0)\left(e^{\frac{i}{h} \hat{H} t}\right) .
$$

Static Hamiltonian: Liouville-Space Solution

In exactly the same way, the Liouville equation is formally solved (check it!) by the expansion

$$
\begin{aligned}
\hat{\rho}(t) & =\hat{\rho}(0)+\frac{t}{i \hbar}[\hat{H}, \hat{\rho}(0)]+\frac{t^{2}}{2(i \hbar)^{2}}[\hat{H},[\hat{H}, \hat{\rho}(0)]]+\ldots \\
& =\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} \frac{1}{\hbar^{n}}[\hat{H}, \ldots,[\hat{H}, \hat{\rho}(0)] \ldots] \\
& \equiv e^{-i \hat{\mathcal{L}} t} \hat{\rho}(0)
\end{aligned}
$$

where

$$
\hat{\mathcal{L}} \equiv \frac{1}{\hbar}[\hat{H}, \quad]
$$

is the Liouvillian superoperator.

Static Hamiltonian: Liouville-Space Solution

In exactly the same way, the Liouville equation is formally solved (check it!) by the expansion

$$
\begin{aligned}
\hat{\rho}(t) & =\hat{\rho}(0)+\frac{t}{i \hbar}[\hat{H}, \hat{\rho}(0)]+\frac{t^{2}}{2(i \hbar)^{2}}[\hat{H},[\hat{H}, \hat{\rho}(0)]]+\ldots \\
& =\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} \frac{1}{\hbar^{n}}[\hat{H}, \ldots,[\hat{H}, \hat{\rho}(0)] \ldots] \\
& \equiv e^{-i \hat{\mathcal{L}} t} \hat{\rho}(0)=\left(e^{-\frac{i}{\hbar} \hat{H} t}\right) \hat{\rho}(0)\left(e^{\frac{i}{\hbar} \hat{H} t}\right)
\end{aligned}
$$

where

$$
\hat{\mathcal{L}} \equiv \frac{1}{\hbar}[\hat{H}, \quad]
$$

is the Liouvillian superoperator.

Superoperators

So what the heck is a superoperator?
A superoperator maps operators to other operators just like operators map vectors to other vectors.

Superoperators

So what the heck is a superoperator?
A superoperator maps operators to other operators just like operators map vectors to other vectors.

Operators Vectors

Superoperators

So what the heck is a superoperator?
A superoperator maps operators to other operators just like operators map vectors to other vectors.

Operators Vectors

Super-operators

Superoperators

So what the heck is a superoperator?
A superoperator maps operators to other operators just like operators map vectors to other vectors.

Operators Vectors

Super-operators

Why superoperators?
Con: A new layer of abstraction
Pro: Drastically simplify many quantum dynamics calculations.

Key Point: Superoperators are "operator operators"! Anything (almost) you can do with operators (exponentiation, differentiation, integration, etc.), you can also do with superoperators.

The Interaction Picture

Time-dependent Perturbation Theory

In spectroscopy, we deal with a Hamiltonian of the form

$$
\begin{array}{cc}
\hat{H}(t)= & \hat{H}_{o}- \\
\Uparrow & \mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}} \\
\Uparrow & \Uparrow \quad \Uparrow \\
\text { Matter } & \text { Field-Dipole }
\end{array}
$$

Time-dependent Perturbation Theory

In spectroscopy, we deal with a Hamiltonian of the form

$$
\begin{gathered}
\hat{H}(t)=\hat{H}_{o}-\mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}} \\
\Uparrow \quad \Uparrow
\end{gathered}
$$

Matter Field-Dipole

The Liouville super-operator has the form

$$
\hat{\mathcal{L}}(t)=\hat{\mathcal{L}}_{o}+\hat{\mathcal{L}}_{E}(t)
$$

When $\mathbf{E}(t)=0$, we know the dynamics. Can we build a perturbative expansion in $\mathbf{E}(t)$?

The Interaction Representation

Define an interaction picture density matrix:

$$
\hat{\rho}_{I}(t) \equiv e^{i \hat{\mathcal{L}}_{o} t} \hat{\rho}(t)
$$

where

$$
\hat{\mathcal{L}}_{o} \equiv \frac{1}{\hbar}\left[\hat{H}_{o}, \quad\right] .
$$

Note that if $\boldsymbol{E}(t)=0$, then $\hat{\rho}_{I}$ is constant in time since $e^{i \hat{\mathcal{L}}_{o} t} e^{-i \hat{\mathcal{L}}_{o} t}=\hat{1}$.

The Interaction Representation

Define an interaction picture density matrix:

$$
\hat{\rho}_{I}(t) \equiv e^{i \hat{\mathcal{L}}_{o} t} \hat{\rho}(t)
$$

where

$$
\hat{\mathcal{L}}_{o} \equiv \frac{1}{\hbar}\left[\hat{H}_{o}, \quad\right] .
$$

Note that if $\boldsymbol{E}(t)=0$, then $\hat{\rho}_{I}$ is constant in time since $e^{i \hat{\mathcal{L}}_{o} t} e^{-i \hat{\mathcal{L}}_{o} t}=\hat{1}$.
Big idea: $\hat{\rho}_{I}$ evolves only due to $\mathbf{E}(t)$ - so we can expand perturbatively in increasing powers of \mathbf{E}.

Interaction Picture Liouville Equation

How does $\hat{\rho}_{I}(t)$ evolve in time?

Interaction Picture Liouville Equation

How does $\hat{\rho}_{I}(t)$ evolve in time? Well...

$$
\begin{aligned}
\frac{d \hat{\rho}_{I}}{d t} & =\left(\frac{d}{d t} e^{i \hat{\mathcal{L}}_{o} t}\right) \hat{\rho}(t)+e^{i \hat{\mathcal{L}}_{o} t}\left(\frac{d}{d t} \hat{\rho}(t)\right) \\
& =i \hat{\mathcal{L}}_{o} e^{i \hat{\mathcal{L}}_{o} t} \hat{\rho}(t)+e^{i \hat{\mathcal{L}}_{o} t}-i e^{i \hat{\mathcal{L}}_{o} t}\left(\hat{\mathcal{L}}_{o}+\hat{\mathcal{L}}_{E}(t)\right) \hat{\rho}(t) \\
& =-i e^{i \hat{\mathcal{L}}_{o} t} \hat{\mathcal{L}}_{E}(t) \hat{\rho}(t) \\
& =-i e^{i \hat{\mathcal{L}}_{o} t} \hat{\mathcal{L}}_{E}(t) e^{-i \hat{\mathcal{L}}_{o} t} e^{i \hat{\mathcal{L}}_{o} t} \hat{\rho}(t) \\
& =-i \hat{\mathcal{L}}_{E}^{(I)}(t) \hat{\rho}_{I}(t),
\end{aligned}
$$

where

$$
\hat{\mathcal{L}}_{E}^{(I)}(t)=e^{i \hat{\mathcal{L}}_{o} t} \hat{\mathcal{L}}_{E}(t) e^{-i \hat{\mathcal{L}}_{o} t} .
$$

$\hat{\rho}_{I}(t)$ follows a Liouville equation determined by $\hat{\mathcal{L}}_{E}^{(I)}(t)$!

The Interaction-Picture Propagator

Let's look at $\hat{\mathcal{L}}_{I}^{(I)}(t)$ in a little more detail:

$$
\hat{\mathcal{L}}_{E}^{(I)}(t) \hat{\rho} \equiv e^{i \hat{\mathcal{L}}_{0} t} \hat{\mathcal{L}}_{E}(t) e^{-i \hat{\mathcal{L}}_{0} t} \hat{\rho}
$$

$$
\begin{aligned}
& =e^{i \hat{\mathcal{L}}_{o} t} \hat{\mathcal{L}}_{E}(t)\left(e^{-i \hat{H}_{o} t} \hat{\rho}^{i \hat{H}_{o} t}\right) \\
& =e^{i \hat{\mathcal{L}}_{o} t}\left[(-\mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}})\left(e^{-i \hat{H}_{o} t} \hat{\rho} e^{i \hat{H}_{o} t}\right)-\left(e^{-i \hat{H}_{o} t} \hat{\rho}^{i \hat{H}_{o} t}\right)(-\mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}})\right] \\
& =\left(-\mathbf{E}(t) \cdot e^{i \hat{H}_{o} t} \hat{\boldsymbol{\mu}} e^{-i \hat{H}_{o} t}\right) \hat{\rho}-\hat{\rho}\left(-\mathbf{E}(t) \cdot e^{i \hat{H}_{o} t} \hat{\boldsymbol{\mu}}^{i \hat{H}_{o} t}\right) \\
& =-\mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}}^{(I)}(t) \hat{\rho}-\hat{\rho}\left(-\mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}}^{(I)}(t)\right) .
\end{aligned}
$$

$\hat{\mathcal{L}}_{E}^{(I)}(t)$ just represents the commutator with the interaction picture light-matter Hamiltonian

$$
-\mathbf{E}(t) \cdot \hat{\boldsymbol{\mu}}^{(I)}(t) \equiv-\mathbf{E}(t) \cdot e^{i \hat{H}_{o} t} \hat{\boldsymbol{\mu}} e^{i \hat{H}_{o} t} .
$$

Interaction Picture Observables

How do we calculate observables?
Trick: The trace is invariant under cyclic permutations

$$
\begin{aligned}
\operatorname{Tr}\{\hat{A} \hat{B}\} & =\sum_{n}\langle n| \hat{A} \hat{B}|n\rangle \\
& =\sum_{n, m}\langle n| \hat{A}|m\rangle\langle m| \hat{B}|n\rangle \\
& =\sum_{n, m}\langle m| \hat{B}|n\rangle\langle n| \hat{A}|m\rangle=\operatorname{Tr}\{\hat{B} \hat{A}\} .
\end{aligned}
$$

Interaction Picture Observables

How do we calculate observables?
Trick: The trace is invariant under cyclic permutations

$$
\begin{aligned}
\operatorname{Tr}\{\hat{A} \hat{B}\} & =\sum_{n}\langle n| \hat{A} \hat{B}|n\rangle \\
& =\sum_{n, m}\langle n| \hat{A}|m\rangle\langle m| \hat{B}|n\rangle \\
& =\sum_{n, m}\langle m| \hat{B}|n\rangle\langle n| \hat{A}|m\rangle=\operatorname{Tr}\{\hat{B} \hat{A}\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\langle A\rangle & =\operatorname{Tr}\left\{\hat{A} e^{-\frac{i}{\hbar} \hat{\mathcal{L}}_{o} t} \hat{\rho}_{I}(t)\right\} \\
& =\operatorname{Tr}\left\{\hat{A}^{-\frac{i}{\hbar} \hat{H}_{o} t} \rho_{I}(t) e^{\frac{i}{\hbar} \hat{H}_{o} t}\right\}=\operatorname{Tr}\left\{e^{\frac{i}{\hbar} \hat{H}_{o} t} \hat{A}^{-\frac{i}{\hbar} \hat{H}_{o} t} \rho_{I}(t)\right\} \\
& =\operatorname{Tr}\left\{\hat{A}^{(I)}(t) \hat{\rho}_{I}(t)\right\}
\end{aligned}
$$

A picture is worth a thousand expansion terms

What's happening in the "interaction picture"?

A picture is worth a thousand expansion terms

What's happening in the "interaction picture"?
Suppose you want to calculate fuel requirements for a Chicago-Sau Paulo flight. Which representation do you use?

- Sun frame: Both targets move at $\sim 1000 \mathrm{MPH}$
- Earth frame: Earth's rotation is already incorporated - all motion due to engines

A picture is worth a thousand expansion terms

What's happening in the "interaction picture"?
Suppose you want to calculate fuel requirements for a Chicago-Sau Paulo flight. Which representation do you use?

- Sun frame: Both targets move at $\sim 1000 \mathrm{MPH}$
- Earth frame: Earth's rotation is already incorporated - all motion due to engines
The interaction picture is like the Earth frame: Natural molecu-
 lar motion is already included. All dynamics are induced by the field.

The Dyson Expansion

The Dyson Expansion

Formally, we can solve the dynamics exactly:

$$
\frac{d}{d t} \hat{\rho}_{I}=-i \hat{\mathcal{L}}_{E}^{(I)}(t)
$$

The Dyson Expansion

Formally, we can solve the dynamics exactly:

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho}_{I} & =-i \hat{\mathcal{L}}_{E}^{(I)}(t) \\
& \Downarrow \\
\hat{\rho}_{I}(t) & =\hat{\rho}_{I}(0)-i \int_{0}^{t} d s \hat{\mathcal{L}}_{E}^{(I)}(s) \hat{\rho}_{I}(s)
\end{aligned}
$$

The Dyson Expansion

Formally, we can solve the dynamics exactly:

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho}_{I} & =-i \hat{\mathcal{L}}_{E}^{(I)}(t) \\
& \Downarrow \\
\hat{\rho}_{I}(t) & =\hat{\rho}_{I}(0)-i \int_{0}^{t} d s \hat{\mathcal{L}}_{E}^{(I)}(s) \hat{\rho}_{I}(s) \\
& \Downarrow \\
\hat{\rho}_{I}(t) & =\hat{\rho}_{I}(0)-i \int_{0}^{t} d s \hat{\mathcal{L}}_{E}^{(I)}(s)\left(\hat{\rho}_{I}(0)-i \int_{0}^{t} d s^{\prime} \hat{\mathcal{L}}_{E}^{(I)}\left(s^{\prime}\right) \hat{\rho}_{I}\left(s^{\prime}\right)\right)
\end{aligned}
$$

The Dyson Expansion

Formally, we can solve the dynamics exactly:

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho}_{I} & =-i \hat{\mathcal{L}}_{E}^{(I)}(t) \\
& \Downarrow \\
\hat{\rho}_{I}(t) & =\hat{\rho}_{I}(0)-i \int_{0}^{t} d s \hat{\mathcal{L}}_{E}^{(I)}(s) \hat{\rho}_{I}(s) \\
& \Downarrow \\
\hat{\rho}_{I}(t) & =\hat{\rho}_{I}(0)-i \int_{0}^{t} d s \hat{\mathcal{L}}_{E}^{(I)}(s)\left(\hat{\rho}_{I}(0)-i \int_{0}^{t} d s^{\prime} \hat{\mathcal{L}}_{E}^{(I)}\left(s^{\prime}\right) \hat{\rho}_{I}\left(s^{\prime}\right)\right) \\
& \Downarrow \\
\hat{\rho}_{I}(t) & =\sum_{n=0}^{\infty}(-i)^{n} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} \\
& \quad \times \hat{\mathcal{L}}_{E}^{(I)}\left(t_{n}\right) \hat{\mathcal{L}}_{E}^{(I)}\left(t_{n-1}\right) \ldots \hat{\mathcal{L}}_{E}^{(I)}\left(t_{1}\right) \hat{\rho}(0) .
\end{aligned}
$$

Notation: Time-Ordered Exponentials

This solution is often termed a time-ordered exponential.

$$
\begin{aligned}
\hat{\rho}_{I}(t)= & \sum_{n=0}^{\infty}(-i)^{n} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} \\
& \times \hat{\mathcal{L}}_{E}^{(I)}\left(t_{n}\right) \hat{\mathcal{L}}_{E}^{(I)}\left(t_{n-1}\right) \ldots \hat{\mathcal{L}}_{E}^{(I)}\left(t_{1}\right) \hat{\rho}(0) \\
\equiv & \exp _{[+]}\left(-i \int_{0}^{\infty} d s \hat{\mathcal{L}}_{E}^{(I)}(s)\right) \hat{\rho}_{I}(0) \\
\equiv & \hat{\mathcal{T}} e^{-i \int_{0}^{\infty} d s \hat{\mathcal{L}}_{E}^{(I)}(s)} \rho_{I}(0)
\end{aligned}
$$

Why? Note that if $\hat{\mathcal{L}}_{E}^{(I)}(t)$ were static:

$$
\hat{\rho}_{I}(t)=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} \hat{\mathcal{L}}_{E}^{(I)} \hat{\mathcal{L}}_{E}^{(I)} \ldots \hat{\mathcal{L}}_{E}^{(I)} \hat{\rho}(0) \quad \equiv e^{-i \hat{\mathcal{L}}_{E}^{(I)}} \hat{\rho}_{I}(0) .
$$

How do we calculate observables?

For observable averages:

$$
\begin{aligned}
&\langle A\rangle= \operatorname{Tr}\left\{\hat{A}^{(I)}(t) \hat{\rho}_{I}(t)\right\} \\
&=\sum_{n=0}^{\infty}(-i)^{n} \int_{0}^{t} d t_{n} \int_{0}^{t_{n}} d t_{n-1} \ldots \int_{0}^{t_{2}} d t_{1} \\
& \times \operatorname{Tr}\left\{\hat{A}^{(I)}(t) \hat{\mathcal{L}}_{E}^{(I)}\left(t_{n}\right) \hat{\mathcal{L}}_{E}^{(I)}\left(t_{n-1}\right) \ldots \hat{\mathcal{L}}_{E}^{(I)}\left(t_{1}\right) \hat{\rho}(0)\right\}
\end{aligned}
$$

This looks a lot - but not quite! - like response theory.

Response Theory

Response Theory

Four steps to response theory:

- Switch to time-intervals τ_{n} between interactions instead of absolute times t_{n} of interactions
- Assume the system starts at equilibrium
- Expand the propagators
- Shift the time axis using time-translation invariance

Step 1: Time intervals

To match response theory, we need to work in time intervals τ_{n} instead of absolute times t_{n} :

$$
\begin{aligned}
\tau_{n} & =t-t_{n} \\
\tau_{n-1} & =t_{n}-t_{n-1} \\
\vdots & \\
\tau_{1} & =t_{2}-t_{1}
\end{aligned}
$$

Step 1: Time intervals

To match response theory, we need to work in time intervals τ_{n} instead of absolute times t_{n} :

$$
\begin{aligned}
\tau_{n} & =t-t_{n} \\
\tau_{n-1} & =t_{n}-t_{n-1} \\
\vdots & \\
\tau_{1} & =t_{2}-t_{1}
\end{aligned}
$$

Changing the integration variables:

$$
\begin{aligned}
\langle A\rangle= & \sum_{n=0}^{\infty} i^{n} \int_{0}^{t} d \tau_{n} \int_{0}^{t-\tau_{n}} d \tau_{n-1} \ldots \int_{0}^{t-\tau_{n}-\ldots-\tau_{2}} d \tau_{1} \\
& \quad \times \operatorname{Tr}\left\{\hat{A}^{(I)}(t) \hat{\mathcal{L}}_{E}^{(I)}\left(t-\tau_{n}\right) \ldots \hat{\mathcal{L}}_{E}^{(I)}\left(t-\tau_{n} \ldots-\tau_{1}\right) \hat{\rho}(0)\right\}
\end{aligned}
$$

Step 2: Initialize at Equilibrium

Next, assume that the system begins at equilibrium, i.e.

- $\hat{\mathcal{L}}_{E}^{(I)}(t)=0$ for $t<0$
- $\hat{\rho}(0)=\hat{\rho}_{\text {eq }}$

Step 2: Initialize at Equilibrium

Next, assume that the system begins at equilibrium, i.e.

- $\hat{\mathcal{L}}_{E}^{(I)}(t)=0$ for $t<0$
- $\hat{\rho}(0)=\hat{\rho}_{\text {eq }}$

This lets us extend integration limits to ∞ :

$$
\begin{aligned}
\langle A\rangle=\sum_{n=0}^{\infty} & i^{n} \int_{0}^{t} d \tau_{n} \int_{0}^{t-\tau_{n}} d \tau_{n-1} \ldots \int_{0}^{t-\tau_{n}-\ldots-\tau_{2}} d \tau_{1} \\
& \times \operatorname{Tr}\left\{\hat{A}^{(I)}(t) \hat{\mathcal{L}}_{E}^{(I)}\left(t-\tau_{n}\right) \ldots \hat{\mathcal{L}}_{E}^{(I)}\left(t-\tau_{n} \ldots-\tau_{1}\right) \hat{\rho}(0)\right\}
\end{aligned}
$$

Step 2: Initialize at Equilibrium

Next, assume that the system begins at equilibrium, i.e.

- $\hat{\mathcal{L}}_{E}^{(I)}(t)=0$ for $t<0$
- $\hat{\rho}(0)=\hat{\rho}_{\text {eq }}$

This lets us extend integration limits to ∞ :

$$
\begin{aligned}
\langle A\rangle=\sum_{n=0}^{\infty} & i^{n} \int_{0}^{\infty} d \tau_{n} \int_{0}^{\infty} d \tau_{n-1} \ldots \int_{0}^{\infty} d \tau_{1} \\
& \times \operatorname{Tr}\left\{\hat{A}^{(I)}(t) \hat{\mathcal{L}}_{E}^{(I)}\left(t-\tau_{n}\right) \ldots \hat{\mathcal{L}}_{E}^{(I)}\left(t-\tau_{n}-\ldots-\tau_{1}\right) \hat{\rho}_{\mathrm{eq}}\right\}
\end{aligned}
$$

Step 3: Expand the propagators

Now expand the propagators and factor out the field:

$$
\begin{aligned}
\langle A\rangle= & \sum_{n=0}^{\infty}\left(\frac{i}{\hbar}\right)^{n} \sum_{\alpha_{1}, \ldots, \alpha_{n}} \int_{0}^{\infty} d \tau_{n} \ldots \int_{0}^{\infty} d \tau_{1} \\
& \times E_{\alpha_{n}}\left(t-\tau_{n}\right) \ldots E_{\alpha_{1}}\left(t-\tau_{n}-\ldots-\tau_{1}\right) \\
& \times \operatorname{Tr}\left\{\hat{A}^{(I)}(t)\left[\hat{\mu}_{\alpha_{n}}^{(I)}\left(t-\tau_{n}\right), \ldots\left[\hat{\mu}_{\alpha_{1}}^{(I)}\left(t-\tau_{n}-\ldots-\tau_{1}\right), \hat{\rho}_{\text {eq }}\right]\right]\right\}
\end{aligned}
$$

Looks like response expansion except that "response function" depends on t !

Step 4: Shift the Time axis

Note that we can shift the time axis at will:

$$
\begin{aligned}
& \operatorname{Tr}\left\{\hat{X}_{1}^{(I)}\left(s_{1}\right) X_{2}^{(I)}\left(s_{2}\right) \ldots X_{n}^{(I)}\left(s_{n}\right)\right\} \\
& =\operatorname{Tr}\left\{e^{\frac{i}{\hbar} \hat{H}_{o} \tau} e^{-\frac{i}{\hbar}} \hat{H}_{o} \tau\right. \\
& \left.\hat{X}_{1}^{(I)}\left(s_{1}\right) \ldots e^{\frac{i}{\hbar} \hat{H}_{o} \tau} e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{n}^{(I)}\left(s_{n}\right)\right\} \\
& =\operatorname{Tr}\left\{e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{1}^{(I)}\left(s_{1}\right) e^{\frac{i}{\hbar} \hat{H}_{o} \tau} \ldots e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{n}^{(I)}\left(s_{n}\right) e^{\frac{i}{\hbar} \hat{H}_{o} \tau}\right\} \\
& =\operatorname{Tr}\left\{\hat{X}_{1}^{(I)}\left(s_{1}-\tau\right) \ldots \hat{X}_{n}^{(I)}\left(s_{n}-\tau\right)\right\} .
\end{aligned}
$$

Step 4: Shift the Time axis

Note that we can shift the time axis at will:

$$
\begin{aligned}
& \operatorname{Tr}\left\{\hat{X}_{1}^{(I)}\left(s_{1}\right) X_{2}^{(I)}\left(s_{2}\right) \ldots X_{n}^{(I)}\left(s_{n}\right)\right\} \\
& =\operatorname{Tr}\left\{e^{\frac{i}{\hbar} \hat{H}_{o} \tau} e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{1}^{(I)}\left(s_{1}\right) \ldots e^{\frac{i}{\hbar} \hat{H}_{o} \tau} e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{n}^{(I)}\left(s_{n}\right)\right\} \\
& =\operatorname{Tr}\left\{e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{1}^{(I)}\left(s_{1}\right) e^{\frac{i}{\hbar} \hat{H}_{o} \tau} \ldots e^{-\frac{i}{\hbar} \hat{H}_{o} \tau} \hat{X}_{n}^{(I)}\left(s_{n}\right) e^{\frac{i}{\hbar} \hat{H}_{o} \tau}\right\} \\
& =\operatorname{Tr}\left\{\hat{X}_{1}^{(I)}\left(s_{1}-\tau\right) \ldots \hat{X}_{n}^{(I)}\left(s_{n}-\tau\right)\right\} .
\end{aligned}
$$

Shifting the time axis by $\tau_{1}+\ldots+\tau_{n}-t$ gives:

$$
\begin{aligned}
\langle A\rangle=\sum_{n=0}^{\infty} & \left(\frac{i}{\hbar}\right)^{n} \sum_{\alpha_{1}, \ldots, \alpha_{n}} \int_{0}^{\infty} d \tau_{n} \ldots \int_{0}^{\infty} d \tau_{1} \\
& \times E_{\alpha_{n}}\left(t-\tau_{n}\right) \ldots E_{\alpha_{1}}\left(t-\tau_{n}-\ldots-\tau_{1}\right) \\
& \times \operatorname{Tr}\left\{\hat{A}^{(I)}\left(\tau_{1}+\ldots+\tau_{3}\right)\left[\hat{\mu}_{\alpha_{n}}^{(I)}\left(\tau_{1}+\ldots+\tau_{n-1}\right), \ldots\left[\hat{\mu}_{\alpha_{1}}^{(I)}(0), \hat{\rho}_{\text {eq }}\right]\right]\right\}
\end{aligned}
$$

Response Theory: A Microscopic Expression

Finally, since $\boldsymbol{P}(t)=\langle\boldsymbol{\mu}(t)\rangle$:

$$
\begin{aligned}
& \boldsymbol{P}(t)=\sum_{n=0}^{\infty}\left(\frac{i}{\hbar}\right)^{n} \sum_{\alpha_{1}, \ldots, \alpha_{n}} \int_{0}^{\infty} d \tau_{n} \ldots \int_{0}^{\infty} d \tau_{1} \\
& \times E_{\alpha_{n}}\left(t-\tau_{n}\right) \ldots E_{\alpha_{1}}\left(t-\tau_{n}-\ldots-\tau_{1}\right) \\
& \times \operatorname{Tr}\left\{\hat{\boldsymbol{\mu}}^{(I)}\left(\tau_{1}+\ldots+\tau_{n}\right)\left[\hat{\mu}_{\alpha_{n}}^{(I)}\left(\tau_{1}+\ldots+\tau_{n-1}\right), \ldots\left[\hat{\mu}_{\alpha_{1}}^{(I)}(0), \hat{\rho}_{\mathrm{eq}}\right]\right]\right\}
\end{aligned}
$$

Comparing with our generic response-theory expansion:

$$
\begin{aligned}
& R_{\alpha_{1} \ldots \alpha_{n} \alpha}^{(n)}\left(\tau_{1}, \ldots, \tau_{n}\right)=\Theta\left(\tau_{1}\right) \Theta\left(\tau_{2}\right) \ldots \Theta\left(\tau_{n}\right)\left(\frac{i}{\hbar}\right)^{n} \\
& \times \operatorname{Tr}\left\{\hat{\mu}_{\alpha}^{(I)}\left(\tau_{1}+\ldots+\tau_{n}\right)\left[\hat{\mu}_{\alpha_{n}}^{(I)}\left(\tau_{1}+\ldots+\tau_{n-1}\right), \ldots\left[\hat{\mu}_{\alpha_{1}}^{(I)}(0), \hat{\rho}_{\mathrm{eq}}\right]\right]\right\} .
\end{aligned}
$$

