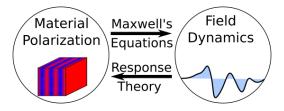
Response Theory

Mike Reppert

October 28, 2022

Mike Rep	ppert
----------	-------

In homogeneous dielectric materials, the dynamics of E and B are determined by the polarization density P.



Today: How does P respond to the field?

Outline for Today:

Mike		

< 1 k

э

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

< 4[™] >

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

Physically, we expect:

ullet Response to $oldsymbol{B}$ is negligible

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- Response is *local*: P(x) depends only on E(x).

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- Response is *local*: P(x) depends only on E(x).
- Response is *causal*: P(t) depends only on $E(t' \le t)$.

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- Response is *local*: $\boldsymbol{P}(\boldsymbol{x})$ depends only on $\boldsymbol{E}(\boldsymbol{x})$.
- Response is *causal*: P(t) depends only on $E(t' \le t)$.
- Response is stable:

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

- ullet Response to $oldsymbol{B}$ is negligible
- Response is *local*: P(x) depends only on E(x).
- Response is *causal*: P(t) depends only on $E(t' \le t)$.
- Response is *stable*:
 - Must exist a time scale δt below which ${\pmb P}$ no longer cares about variations in ${\pmb E}(t+\delta t)$

We study P as a *functional* of E and B:

$$\boldsymbol{P}(\boldsymbol{x},t) = \boldsymbol{P}[\boldsymbol{E}(\boldsymbol{x}',t'),\boldsymbol{B}(\boldsymbol{x}',t')].$$

- Response to ${oldsymbol B}$ is negligible
- Response is *local*: P(x) depends only on E(x).
- Response is *causal*: P(t) depends only on $E(t' \le t)$.
- Response is *stable*:
 - Must exist a time scale δt below which ${\pmb P}$ no longer cares about variations in ${\pmb E}(t+\delta t)$
 - Must exist a time scale T beyond which P doesn't remember E(t-T).

Take-Home Point

Physical constraints:

- locality
- causality
- stability

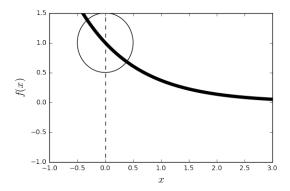
strongly limit the possible forms for the mathematical dependence of P on E.

Image: A mathematical states and a mathem

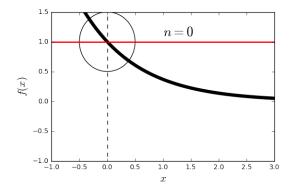
э

The *response theory* framework is essentially a Taylor series expansion for functionals.

The *response theory* framework is essentially a Taylor series expansion for functionals.

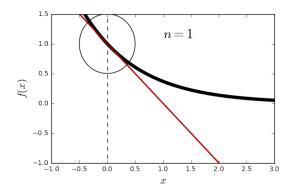


The *response theory* framework is essentially a Taylor series expansion for functionals.



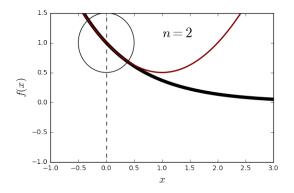
 $f(x) \approx f(0)$

The *response theory* framework is essentially a Taylor series expansion for functionals.



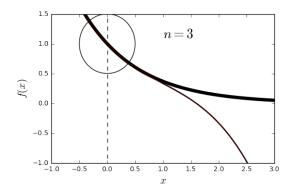
$$f(x) \approx f(0) + \left. \frac{df}{dx} \right|_{x=0} x$$

The *response theory* framework is essentially a Taylor series expansion for functionals.



$$f(x) \approx f(0) + \left. \frac{df}{dx} \right|_{x=0} x + \frac{1}{2} \left. \frac{d^2 f}{dx^2} \right|_{x=0} x^2$$

The *response theory* framework is essentially a Taylor series expansion for functionals.



$$f(x) \approx f(0) + \left. \frac{df}{dx} \right|_{x=0} x + \frac{1}{2} \left. \frac{d^2 f}{dx^2} \right|_{x=0} x^2 + \frac{1}{6} \left. \frac{d^3 f}{dx^3} \right|_{x=0} x^3 \dots$$

The Taylor series of a multi-variable function $g(x_1, ..., x_N)$ looks like:

$$g(x_1, ..., x_N) = g(0, ..., 0) + \frac{\partial g}{\partial x_1}\Big|_{\boldsymbol{x=0}} x_1 + \frac{\partial g}{\partial x_2}\Big|_{\boldsymbol{x=0}} x_2 + ... + \frac{\partial g}{\partial x_N}\Big|_{\boldsymbol{x=0}} x_N + \frac{1}{2!} \frac{\partial^2 g}{\partial x_1^2}\Big|_{\boldsymbol{x=0}} x_1^2 + \frac{\partial g}{\partial x_1 \partial x_2}\Big|_{\boldsymbol{v=0}} x_1 x_2 + ... + \frac{1}{2!} \frac{\partial^2 g}{\partial x_N^2}\Big|_{\boldsymbol{x=0}} x_N^2 + ...$$

What is the corresponding expansion for a functional like P[E]?

Since the response is stable, we can sample ${m E}$ at a finite number of time points:

 $P_{I}(t) \approx f_{I}(E_{x}(t_{0}), E_{y}(t_{0}), E_{z}(t_{0}), E_{x}(t_{1}), ..., E_{z}(t_{N}); t, \delta t, T).$

Expanding in a Taylor series:

$$\begin{split} P_{I}(t) &\approx f_{I}(0,...,0;t,\delta t,T) \\ &+ \left. \frac{\partial f_{I}}{\partial E_{x}(t_{0})} \right|_{\boldsymbol{E}=\boldsymbol{0}} E_{x}(t_{0}) + ... + \left. \frac{\partial f_{I}}{\partial E_{z}(t_{N})} \right|_{\boldsymbol{E}=\boldsymbol{0}} E_{z}(t_{N}) \\ &+ \left. \frac{1}{2!} \left. \frac{\partial^{2} f_{I}}{\partial [E_{x}(t_{0})]^{2}} \right|_{\boldsymbol{E}=\boldsymbol{0}} [E_{x}(t_{0})]^{2} + \left. \frac{\partial^{2} f_{I}}{\partial E_{x}(t_{0})\partial E_{y}(t_{0})} \right|_{\boldsymbol{E}=\boldsymbol{0}} E_{x}(t_{0})E_{y}(t_{0}) + ... \end{split}$$

As our sampling points get closer together, the sums converge to integrals:

$$\boldsymbol{P}(t) = \sum_{n=0}^{\infty} \sum_{\alpha_1,\dots,\alpha_n} \int_{-\infty}^{t} dt_n \int_{-\infty}^{t_n} dt_{n-1} \dots \int_{-\infty}^{t_2} dt_1$$
$$\times E_{\alpha_1}(t_1) E_{\alpha_2}(t_2) \dots E_{\alpha_n}(t_n)$$
$$\times R_{\alpha_1\dots\alpha_n\alpha}^{(n)}(t, t_n, t_{n-1}, \dots, t_1)$$

where $R_{\alpha_1...\alpha_n\alpha}^{(n)}(t, t_n, t_{n-1}, ..., t_1)$ is the n^{th} -order response function^{*} – the target of n^{th} -order spectroscopies.

*Almost. Actually $R^{(n)}$ depends only on time *differences*. Stay tuned!

Symmetry and Invariance of Response Tensors

Time-translation Invariance

All systems we study will satisfy **time-translation invariance**: Only time *differences* matter!

 $R^{(n)}_{\alpha_1...\alpha_n\alpha}(t, t_n, t_{n-1}, ..., t_1) \Rightarrow R^{(n)}_{\alpha_1...\alpha_n\alpha}(t - t_n, t_n - t_{n-1}, ..., t_2 - t_1)$

Time-translation Invariance

All systems we study will satisfy **time-translation invariance**: Only time *differences* matter!

$$R^{(n)}_{\alpha_1...\alpha_n\alpha}(t, t_n, t_{n-1}, ..., t_1) \Rightarrow R^{(n)}_{\alpha_1...\alpha_n\alpha}(t - t_n, t_n - t_{n-1}, ..., t_2 - t_1)$$

Rearranging:

$$P_{\alpha}^{(n)}(t) = \sum_{\alpha_1,...,\alpha_n} \int_{-\infty}^{\infty} d\tau_n \dots \int_{-\infty}^{\infty} d\tau_1 R_{\alpha_1...\alpha_n\alpha}^{(n)}(\tau_1,...,\tau_n) \\ \times E_{\alpha_1}(t-\tau_1-...-\tau_n) E_{\alpha_2}(t-\tau_2-...-\tau_n) \dots E_{\alpha_n}(t-\tau_n).$$

Mike Reppert

Time-translation Invariance

All systems we study will satisfy **time-translation invariance**: Only time *differences* matter!

$$R^{(n)}_{\alpha_1...\alpha_n\alpha}(t, t_n, t_{n-1}, ..., t_1) \Rightarrow R^{(n)}_{\alpha_1...\alpha_n\alpha}(t - t_n, t_n - t_{n-1}, ..., t_2 - t_1)$$

Rearranging:

$$\begin{aligned} P_{\alpha}^{(n)}(t) &= \sum_{\alpha_{1},...,\alpha_{n}} \int_{-\infty}^{\infty} d\tau_{n}...\int_{-\infty}^{\infty} d\tau_{1} R_{\alpha_{1}...\alpha_{n}\alpha}^{(n)}(\tau_{1},...,\tau_{n}) \\ &\times E_{\alpha_{1}}(t-\tau_{1}-...-\tau_{n}) E_{\alpha_{2}}(t-\tau_{2}-...-\tau_{n})...E_{\alpha_{n}}(t-\tau_{n}). \end{aligned}$$

Causality dictates that $R_{\alpha_1,...,\alpha_n,\alpha}^{(n)}$ is non-zero only for *positive time delays*.

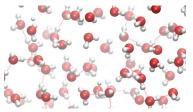
Neumann's Principle: Spatial symmetries of the material *must* be reflected in the response tensor.

This **dramatically** simplifies the analysis of nonlinear experiments!

Neumann's Principle: Spatial symmetries of the material *must* be reflected in the response tensor.

This **dramatically** simplifies the analysis of nonlinear experiments!

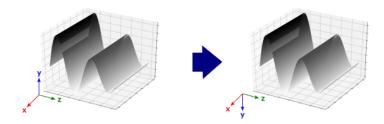
NB: Only macroscopic symmetry is relevant!



https://commons.wikimedia.org/wiki/File: A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

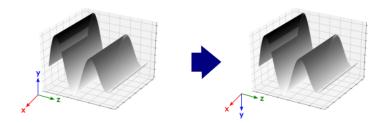
Example: $R_{xy}^{(1)}$ in an isotropic sample

Suppose E is polarized along the *y*-axis. What happens to $P_x^{(1)}$ when we invert the *y*-axis?



Example: $R_{xy}^{(1)}$ in an isotropic sample

Suppose E is polarized along the *y*-axis. What happens to $P_x^{(1)}$ when we invert the *y*-axis?



Nothing!

Mi	ke	Re	DI	bei	t

Under *y***-axis inversion:**

• $y \to -y$ • $P_x^{(1)} \to P_x^{(1)}$ • $E_y \to -E_y$ • $R_{xy} \to R_{xy}$

э

Under *y***-axis inversion:**

•
$$y \to -y$$
 • $P_x^{(1)} \to P_x^{(1)}$
• $E_y \to -E_y$ • $R_{xy} \to R_{xy} \Leftarrow$ Neumann's
Principle

Under *y***-axis inversion:**

•
$$y \to -y$$
 • $P_x^{(1)} \to P_x^{(1)}$
• $E_y \to -E_y$ • $R_{xy} \to R_{xy} \Leftarrow$ Neumann's
Principle

But response theory says:

$$P_x^{(1)}(t) = \int_{-\infty}^{\infty} d\tau_1 R_{xy}^{(1)}(\tau_1) E_y(t-\tau_1) = -P_x^{(1)}(t).$$

Under *y***-axis inversion:**

•
$$y \to -y$$
 • $P_x^{(1)} \to P_x^{(1)}$
• $E_y \to -E_y$ • $R_{xy} \to R_{xy} \Leftarrow$ Neumann's
Principle

But response theory says:

$$P_x^{(1)}(t) = \int_{-\infty}^{\infty} d\tau_1 R_{xy}^{(1)}(\tau_1) E_y(t-\tau_1) = -P_x^{(1)}(t).$$

The only possible conclusion is that $R_{xy}^{(1)} = 0!$

More generally: In isotropic media

• All tensor elements with an odd number of any index vanish (e.g., $R_{xxxy}^{(3)} = 0$)

More generally: In isotropic media

- All tensor elements with an odd number of any index vanish (e.g., $R_{xxxy}^{(3)} = 0$)
- Corollary: all even-order response functions vanish(!)

More generally: In isotropic media

- All tensor elements with an odd number of any index vanish (e.g., $R_{xxxy}^{(3)} = 0$)
- Corollary: all even-order response functions vanish(!)
- Response tensor elements are symmetry-related (e.g., $R_{xxyy}^{(3)}=R_{yyxx}^{(1)}$)

But remember: Not all materials are isotropic

But remember: Not all materials are isotropic

Even-order spectroscopies are *specifically sensitive* to material boundaries

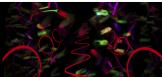
But remember: Not all materials are isotropic

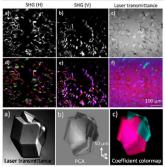
Even-order spectroscopies are *specifically sensitive* to material boundaries \Rightarrow Imaging!

But remember: Not all materials are isotropic

Even-order spectroscopies are *specifically sensitive* to material boundaries \Rightarrow Imaging!

Garth Simpson





Take-Home Points

Time-translation invariance and **causality** dictate that response functions depend only on *positive time delays* between interactions.

Spatial symmetries in the material must be reflected in the response tensors.

In isotropic media:

- Response elements with unpaired axes vanish
- Surviving elements are symmetry-related
- Even-order spectroscopies are forbidden hence useful for detecting defects