Electromagnetic Waves in Vacuum

Mike Reppert

August 20, 2020

The Lorentz Force Law:

$$F_{\rm EM} \approx q \boldsymbol{e}(\boldsymbol{r},t) + rac{q}{c} \boldsymbol{v} \times \boldsymbol{b}(\boldsymbol{r},t)$$

Maxwell's Equations:

$$\nabla \cdot \boldsymbol{e} = 4\pi \varrho(\boldsymbol{x}, t)$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times \boldsymbol{e} + \frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = \frac{4\pi}{c} \boldsymbol{j}(\boldsymbol{x}, t)$$

< < >> < <</p>

The Lorentz Force Law:

$$F_{\rm EM} \approx q \boldsymbol{e}(\boldsymbol{r},t) + \frac{q}{c} \boldsymbol{v} \times \boldsymbol{b}(\boldsymbol{r},t)$$

Maxwell's Equations:

$$\nabla \cdot \boldsymbol{e} = 4\pi \varrho(\boldsymbol{x}, t)$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times \boldsymbol{e} + \frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = \frac{4\pi}{c} \boldsymbol{j}(\boldsymbol{x}, t)$$

Today: How does the EM field propagate in vacuum?

1 Decoupling the Electric and Magnetic Fields

2 Propagating Waves

Oscillating Signals: The Fourier Basis

Decoupling the Electric and Magnetic Fields

$$\nabla \cdot \boldsymbol{e} = 0$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times \boldsymbol{e} + \frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{e} = 0$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times \left(\nabla \times \boldsymbol{e} + \frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} = 0 \right)$$
$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{e} = 0$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times (\nabla \times \boldsymbol{e}) + \frac{1}{c} \frac{\partial (\nabla \times \boldsymbol{b})}{\partial t} = 0$$
$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{e} = 0$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times \boldsymbol{b} = 0$$
$$\nabla \times (\nabla \times \boldsymbol{e}) + \frac{1}{c} \frac{\partial (\nabla \times \boldsymbol{b})}{\partial t} = 0$$
$$\nabla \times \boldsymbol{b} = \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t}$$

Maxwell's Equations in Vacuum:

 $\nabla \cdot \boldsymbol{e} = 0$ $\nabla \cdot \boldsymbol{b} = 0$ $\nabla \times (\nabla \times \boldsymbol{e}) + \frac{1}{c} \frac{\partial (\nabla \times \boldsymbol{b})}{\partial t} = 0$ $\nabla \times \boldsymbol{b} = \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t}$ \Downarrow

$$abla imes (
abla imes oldsymbol{e}(oldsymbol{x},t)) + rac{1}{c^2} rac{\partial^2 oldsymbol{e}(oldsymbol{x},t)}{\partial t^2} = 0.$$

A Dirty Trick

Use the vector identity:

$$abla imes (
abla imes \mathbf{v}) = -
abla^2 \mathbf{v} +
abla (
abla \cdot \mathbf{v})$$

A Dirty Trick

Use the vector identity:

$$\nabla \times (\nabla \times \mathbf{v}) = -\nabla^2 \mathbf{v} + \nabla (\nabla \cdot \mathbf{v})$$

to get

$$\begin{split} 0 &= \nabla \times (\nabla \times \boldsymbol{e}(\boldsymbol{x},t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x},t)}{\partial t^2} \\ &= -\nabla^2 \boldsymbol{e}(\boldsymbol{x},t) + \nabla (\nabla \cdot \boldsymbol{e}(\boldsymbol{x},t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x},t)}{\partial t^2} \end{split}$$

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Dirty Trick

Use the vector identity:

$$\nabla \times (\nabla \times \mathbf{v}) = -\nabla^2 \mathbf{v} + \nabla (\nabla \cdot \mathbf{v})$$

to get

$$\begin{split} 0 &= \nabla \times (\nabla \times \boldsymbol{e}(\boldsymbol{x},t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x},t)}{\partial t^2} \\ &= -\nabla^2 \boldsymbol{e}(\boldsymbol{x},t) + \nabla (\nabla \cdot \boldsymbol{e}(\boldsymbol{x},t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x},t)}{\partial t^2} \end{split}$$

or

$$\left(rac{1}{c^2}rac{\partial^2}{\partial t^2} -
abla^2
ight)oldsymbol{e}(oldsymbol{x},t) = 0.$$

This is the **homogeneous wave equation**.

In vacuum, Maxwell's equations imply that *each component* of the electric field obeys the **homogeneous wave equation** (HWE).

In vacuum, Maxwell's equations imply that *each component* of the electric field obeys the **homogeneous wave equation** (HWE).

NB: The same result holds for the magnetic field!

In vacuum, Maxwell's equations imply that *each component* of the electric field obeys the **homogeneous wave equation** (HWE).

NB: The same result holds for the magnetic field!

So what?

æ

The (one-component) wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)f(\boldsymbol{x}, t) = 0$$

is solved by *any* function f of the form $f(\hat{s} \cdot x \pm ct)$.

The (one-component) wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)f(\boldsymbol{x}, t) = 0$$

is solved by *any* function f of the form $f(\hat{s} \cdot x \pm ct)$.

Check it!

The (one-component) wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)f(\boldsymbol{x}, t) = 0$$

is solved by *any* function f of the form $f(\hat{s} \cdot x \pm ct)$.

Check it!

Displacement along the unit vector \hat{s} is equivalent to a shift in time, i.e. the solution *propagates* at speed c.

Solutions to the HWE can take *any form* that propagates at the speed of light.

Oscillating Signals: The Fourier Basis

August 20, 2020

< A >

11 / 23

The HWE is solved by *any* propagating function. So why do we usually think of "light waves" as oscillatory?

The HWE is solved by *any* propagating function. So why do we usually think of "light waves" as oscillatory?

Many physical sources have well-defined frequencies

The HWE is solved by *any* propagating function. So why do we usually think of "light waves" as oscillatory?

- Many physical sources have well-defined frequencies
- ② All waves can be *represented* as a *sum* of oscillatory signals

Fourier decomposition

http://mathworld.wolfram.com/FourierSeries.html < D > < D > < E >

Mike Reppert

Electromagnetic Waves in Vacuum 12 / 23

August 20, 2020 12 / 23

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \,\mathrm{e}^{\mathrm{i}\omega t} g(t).$$

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

Inverted by:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}\omega t} \tilde{g}(\omega).$$

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

Inverted by:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}\omega t} \tilde{g}(\omega).$$

http://mriquestions.com/fourier-transform-ft.html

< □ > < □ > < □ > < □ > < □ > < □ >

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

Inverted by:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}\omega t} \tilde{g}(\omega).$$

http://mriquestions.com/fourier-transform-ft.html

Note: Widths are inversely related!

Mike Reppert

Electromagnetic Waves in Vacuum 13 / 23

August 20, 2020 13 / 23

4D Fourier Transform

In electrodynamics, we use a 4D transform:

$$\begin{split} \tilde{\boldsymbol{e}}(\boldsymbol{k},\omega) &= \int_{-\infty}^{\infty} d\boldsymbol{x} \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \boldsymbol{e}(\boldsymbol{x},t) \\ \boldsymbol{e}(\boldsymbol{x},t) &= \frac{1}{(2\pi)^4} \int_{-\infty}^{\infty} d\boldsymbol{k} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \tilde{\boldsymbol{e}}(\boldsymbol{k},\omega). \end{split}$$

The individual frequency/wavevector components in $\tilde{e}(\mathbf{k}, \omega)$ can be physically separated using a prism!

NB: The FT is completely general! Any field can be decomposed as an integral of Fourier components.

NB: The FT is completely general! Any field can be decomposed as an integral of Fourier components.

What are the characteristic features of HWE solutions in Fourier space?

The FT Derivative Property

The FT converts differential equations to algebraic equations:

The FT Derivative Property

The FT converts **differential equations** to **algebraic equations**:

$$\frac{dg}{dt} = e^{i\omega t}g(t)\Big|_{-\infty}^{\infty} - i\omega \int_{-\infty}^{\infty} dt \, e^{i\omega t}g(t) = -i\omega \tilde{g}(\omega),$$

The FT Derivative Property

The FT converts differential equations to algebraic equations:

$$\frac{d\bar{g}}{dt} = e^{i\omega t}g(t)\big|_{-\infty}^{\infty} - i\omega \int_{-\infty}^{\infty} dt \, e^{i\omega t}g(t) = -i\omega \tilde{g}(\omega),$$

For the HWE, this implies

This is the **vacuum dispersion relation** connecting frequency and wavelength (1/k).

The Fourier Transform splits signals into *frequency components*.

Using a 4D FT, we can split the field into frequency components in *both time and space*.

The FT converts differential equations into algebraic equations. In vacuum, the HWE implies the dispersion relation $\Rightarrow \omega = ck$.

Plane Waves

æ

< □ > < □ > < □ > < □ > < □ >

Plane Waves

In general, electromagnetic fields can be very complex! https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html

Usually, we'll consider simplified forms \Rightarrow plane waves.

19 / 23

A *plane wave* is an electromagnetic field propagating with a fixed $\hat{\boldsymbol{s}}\text{-vector.}$

http://labman.phys.utk.edu/phys222core/modules/m6/polarization.html

Plane Waves

Plane Waves

$$\begin{array}{ll} \textbf{General} \qquad \boldsymbol{e}(\boldsymbol{x},t) = \frac{1}{(2\pi)^4} \int_{-\infty}^{\infty} d\boldsymbol{k} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \tilde{\boldsymbol{e}}(\boldsymbol{k},\omega) \\ & \Downarrow \\ \textbf{Sum of Plane} \\ \textbf{Waves} \qquad \boldsymbol{e}(\boldsymbol{x},t) = \frac{1}{2\pi} \sum_{i} \int_{0}^{\infty} d\omega \, \tilde{\boldsymbol{A}}^{(i)}(\omega) \mathrm{e}^{-\mathrm{i}\frac{\omega}{c}\left(ct - \hat{\boldsymbol{s}}^{(i)} \cdot \boldsymbol{x}\right)} + \mathrm{c. \ c.} \\ & \Downarrow \\ \textbf{Plane Wave \qquad \boldsymbol{e}(\boldsymbol{x},t) = \frac{1}{2\pi} \int_{0}^{\infty} d\omega \, \tilde{\boldsymbol{A}}(\omega) \mathrm{e}^{-\mathrm{i}\frac{\omega}{c}\left(ct - \hat{\boldsymbol{s}} \cdot \boldsymbol{x}\right)} + \mathrm{c. \ c.} \\ & \Downarrow \\ \textbf{Polarized} \\ \textbf{Plane Wave \qquad \boldsymbol{e}(\boldsymbol{x},t) = \frac{\hat{\boldsymbol{\epsilon}}}{2\pi} \int_{0}^{\infty} d\omega \, \tilde{\boldsymbol{A}}(\omega) \mathrm{e}^{-\mathrm{i}\frac{\omega}{c}\left(ct - \hat{\boldsymbol{s}} \cdot \boldsymbol{x}\right)} + \mathrm{c. \ c.} \end{array}$$

- ∢ ⊒ → August 20, 2020

• • • • • • • •

э

Plane Waves

Polarized plane waves have both a propagation axis \hat{s} and a polarization vector $\hat{\epsilon}$

https://en.wikipedia.org/wiki/Polarizer

Mike Reppert

∃ >

In general: Electromagnetic fields are complicated!

A plane wave is an EM field with a well-defined propagation axis \hat{s}

A *polarized plane wave* has both a propagation axis \hat{s} and a polarization vector $\hat{\epsilon}$

Polarization comes in several flavors: Circular, eliptical, linear.