# Electromagnetic Waves in Vacuum 

Mike Reppert

August 20, 2020

## Last time on CHEM676:

## The Lorentz Force Law:

$$
\boldsymbol{F}_{\mathrm{EM}} \approx q \boldsymbol{e}(\boldsymbol{r}, t)+\frac{q}{c} \boldsymbol{v} \times \boldsymbol{b}(\boldsymbol{r}, t)
$$

## Maxwell's Equations:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{e} & =4 \pi \varrho(\boldsymbol{x}, t) \\
\nabla \cdot \boldsymbol{b} & =0 \\
\nabla \times \boldsymbol{e}+\frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} & =0 \\
\nabla \times \boldsymbol{b}-\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} & =\frac{4 \pi}{c} \boldsymbol{j}(\boldsymbol{x}, t)
\end{aligned}
$$

## Last time on CHEM676:

## The Lorentz Force Law:

$$
\boldsymbol{F}_{\mathrm{EM}} \approx q \boldsymbol{e}(\boldsymbol{r}, t)+\frac{q}{c} \boldsymbol{v} \times \boldsymbol{b}(\boldsymbol{r}, t)
$$

## Maxwell's Equations:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{e} & =4 \pi \varrho(\boldsymbol{x}, t) \\
\nabla \cdot \boldsymbol{b} & =0 \\
\nabla \times \boldsymbol{e}+\frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} & =0 \\
\nabla \times \boldsymbol{b}-\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} & =\frac{4 \pi}{c} \boldsymbol{j}(\boldsymbol{x}, t)
\end{aligned}
$$

Today: How does the EM field propagate in vacuum?

## Outline for Today:

(1) Decoupling the Electric and Magnetic Fields
(2) Propagating Waves
(3) Oscillating Signals: The Fourier Basis
4) Plane Waves

## Decoupling the Electric and Magnetic Fields

## Decoupling the E\&M Fields

## Maxwell's Equations in Vacuum:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{e} & =0 \\
\nabla \cdot \boldsymbol{b} & =0 \\
\nabla \times \boldsymbol{e}+\frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} & =0 \\
\nabla \times \boldsymbol{b}-\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} & =0
\end{aligned}
$$

## Decoupling the E\&M Fields

## Maxwell's Equations in Vacuum:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{e} & =0 \\
\nabla \cdot \boldsymbol{b} & =0 \\
\nabla \times\left(\nabla \times \boldsymbol{e}+\frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t}\right. & =0) \\
\nabla \times \boldsymbol{b}-\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} & =0
\end{aligned}
$$

## Decoupling the E\&M Fields

## Maxwell's Equations in Vacuum:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{e} & =0 \\
\nabla \cdot \boldsymbol{b} & =0 \\
\nabla \times(\nabla \times \boldsymbol{e})+\frac{1}{c} \frac{\partial(\nabla \times \boldsymbol{b})}{\partial t} & =0 \\
\nabla \times \boldsymbol{b}-\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} & =0
\end{aligned}
$$

## Decoupling the E\&M Fields

## Maxwell's Equations in Vacuum:

$$
\begin{aligned}
\nabla \cdot \boldsymbol{e} & =0 \\
\nabla \cdot \boldsymbol{b} & =0 \\
\nabla \times(\nabla \times \boldsymbol{e})+\frac{1}{c} \frac{\partial(\nabla \times \boldsymbol{b})}{\partial t} & =0 \\
\nabla \times \boldsymbol{b}=\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} &
\end{aligned}
$$

## Decoupling the E\&M Fields

## Maxwell's Equations in Vacuum:

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{e}=0 \\
& \nabla \cdot \boldsymbol{b}=0 \\
& \nabla \times(\nabla \times \boldsymbol{e})+\frac{1}{c} \frac{\partial(\nabla \times \boldsymbol{b})}{\partial t}=0 \\
& \nabla \times \boldsymbol{b}=\frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} \\
& \Downarrow \\
& \nabla \times(\nabla \times \boldsymbol{e}(\boldsymbol{x}, t))+\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^{2}}=0 .
\end{aligned}
$$

## A Dirty Trick

Use the vector identity:

$$
\nabla \times(\nabla \times \mathbf{v})=-\nabla^{2} \mathbf{v}+\nabla(\nabla \cdot \mathbf{v})
$$

## A Dirty Trick

Use the vector identity:

$$
\nabla \times(\nabla \times \mathbf{v})=-\nabla^{2} \mathbf{v}+\nabla(\nabla \cdot \mathbf{v})
$$

to get

$$
\begin{aligned}
0 & =\nabla \times(\nabla \times \boldsymbol{e}(\boldsymbol{x}, t))+\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^{2}} \\
& =-\nabla^{2} \boldsymbol{e}(\boldsymbol{x}, t)+\nabla(\nabla \cdot \boldsymbol{e}(\boldsymbol{x}, t))+\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^{2}}
\end{aligned}
$$

## A Dirty Trick

Use the vector identity:

$$
\nabla \times(\nabla \times \mathbf{v})=-\nabla^{2} \mathbf{v}+\nabla(\nabla \cdot \mathbf{v})
$$

to get

$$
\begin{aligned}
0 & =\nabla \times(\nabla \times \boldsymbol{e}(\boldsymbol{x}, t))+\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^{2}} \\
& =-\nabla^{2} \boldsymbol{e}(\boldsymbol{x}, t)+\nabla(\nabla \cdot \boldsymbol{e}(\boldsymbol{x}, t))+\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^{2}}
\end{aligned}
$$

or

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \boldsymbol{e}(\boldsymbol{x}, t)=0
$$

This is the homogeneous wave equation.

## Take-Home Point

In vacuum, Maxwell's equations imply that each component of the electric field obeys the homogeneous wave equation (HWE).

## Take-Home Point

In vacuum, Maxwell's equations imply that each component of the electric field obeys the homogeneous wave equation (HWE).

NB: The same result holds for the magnetic field!

## Take-Home Point

In vacuum, Maxwell's equations imply that each component of the electric field obeys the homogeneous wave equation (HWE).

NB: The same result holds for the magnetic field!

So what?

## Propagating Waves

## Propagating Waves

The (one-component) wave equation

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) f(\boldsymbol{x}, t)=0
$$

is solved by any function $f$ of the form $f(\hat{\boldsymbol{s}} \cdot \boldsymbol{x} \pm c t)$.

## Propagating Waves

The (one-component) wave equation

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) f(\boldsymbol{x}, t)=0
$$

is solved by any function $f$ of the form $f(\hat{\boldsymbol{s}} \cdot \boldsymbol{x} \pm c t)$.

## Check it!

## Propagating Waves

The (one-component) wave equation

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) f(\boldsymbol{x}, t)=0
$$

is solved by any function $f$ of the form $f(\hat{\boldsymbol{s}} \cdot \boldsymbol{x} \pm c t)$.

## Check it!

Displacement along the unit vector $\hat{\boldsymbol{s}}$ is equivalent to a shift in time, i.e. the solution propagates at speed $c$.

## Take-Home Point

## Solutions to the HWE can take any form that propagates at the speed of light.



## Oscillating Signals: The Fourier Basis



## The Fourier Basis

The HWE is solved by any propagating function. So why do we usually think of "light waves" as oscillatory?

## The Fourier Basis

The HWE is solved by any propagating function. So why do we usually think of "light waves" as oscillatory?
(1) Many physical sources have well-defined frequencies

## The Fourier Basis

The HWE is solved by any propagating function. So why do we usually think of "light waves" as oscillatory?
(1) Many physical sources have well-defined frequencies
(2) All waves can be represented as a sum of oscillatory signals


Fourier decomposition

## The Fourier Basis

The Fourier transform tells you the amplitude and phase of a given frequency component in a signal.

The Fourier transform tells you the amplitude and phase of a given frequency component in a signal.

1D Fourier transform:

$$
\tilde{g}(\omega)=\int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} \omega t} g(t)
$$

The Fourier transform tells you the amplitude and phase of a given frequency component in a signal.

1D Fourier transform:

$$
\tilde{g}(\omega)=\int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} \omega t} g(t)
$$

Inverted by:
$g(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega \mathrm{e}^{-\mathrm{i} \omega t} \tilde{g}(\omega)$.

## The Fourier Basis

The Fourier transform tells you the amplitude and phase of a given frequency component in a signal.

1D Fourier transform:

$$
\tilde{g}(\omega)=\int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} \omega t} g(t)
$$

Inverted by:
$g(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega \mathrm{e}^{-\mathrm{i} \omega t} \tilde{g}(\omega)$.

Signal $s(t)$

cosine wave

sinc function


Fourier Transform $S(\omega)$


Gaussian


Lorentzian
http://mriquestions.com/fourier-transform-ft.html

## The Fourier Basis

The Fourier transform tells you the amplitude and phase of a given frequency component in a signal.

1D Fourier transform:

$$
\tilde{g}(\omega)=\int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} \omega t} g(t)
$$

Inverted by:
$g(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega \mathrm{e}^{-\mathrm{i} \omega t} \tilde{g}(\omega)$.

http://mriquestions.com/fourier-transform-ft.html

Note: Widths are inversely related!

## 4D Fourier Transform

In electrodynamics, we use a 4D transform:

$$
\begin{aligned}
\tilde{\boldsymbol{e}}(\boldsymbol{k}, \omega) & =\int_{-\infty}^{\infty} d \boldsymbol{x} \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i}(\omega t-\boldsymbol{k} \cdot \boldsymbol{x})} \boldsymbol{e}(\boldsymbol{x}, t) \\
\boldsymbol{e}(\boldsymbol{x}, t) & =\frac{1}{(2 \pi)^{4}} \int_{-\infty}^{\infty} d \boldsymbol{k} \int_{-\infty}^{\infty} d \omega \mathrm{e}^{-\mathrm{i}(\omega t-\boldsymbol{k} \cdot \boldsymbol{x})} \tilde{\boldsymbol{e}}(\boldsymbol{k}, \omega) .
\end{aligned}
$$

The individual frequency/wavevector components in $\tilde{\boldsymbol{e}}(\boldsymbol{k}, \omega)$ can be physically separated using a prism!


## NB: The FT is completely general! Any field can be decomposed as an integral of Fourier components.



## NB: The FT is completely general! Any field can be

 decomposed as an integral of Fourier components.What are the characteristic features of HWE solutions in Fourier space?


## The FT Derivative Property

The FT converts differential equations to algebraic equations:

## The FT Derivative Property

The FT converts differential equations to algebraic equations:

$$
\frac{\widetilde{d g}}{d t}=\left.\mathrm{e}^{\mathrm{i} \omega t} g(t)\right|_{-\infty} ^{\infty}-i \omega \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} \omega t} g(t)=-i \omega \tilde{g}(\omega)
$$

## The FT Derivative Property

The FT converts differential equations to algebraic equations:

$$
\frac{\widetilde{d g}}{d t}=\left.\mathrm{e}^{\mathrm{i} \omega t} g(t)\right|_{-\infty} ^{\infty}-i \omega \int_{-\infty}^{\infty} d t \mathrm{e}^{\mathrm{i} \omega t} g(t)=-i \omega \tilde{g}(\omega)
$$

For the HWE, this implies

$$
\begin{gathered}
\left(-\frac{\omega^{2}}{c^{2}}+k^{2}\right) \tilde{\boldsymbol{e}}(\boldsymbol{k}, \omega)=0 \\
\Downarrow \\
\omega=c k
\end{gathered}
$$

This is the vacuum dispersion relation connecting frequency and wavelength $(1 / k)$.

## Take-Home Points

The Fourier Transform splits signals into frequency components.

Using a 4D FT, we can split the field into frequency components in both time and space.

The FT converts differential equations into algebraic equations. In vacuum, the HWE implies the dispersion relation $\Rightarrow \omega=c k$.

## Plane Waves

## Plane Waves

In general, electromagnetic fields can be very complex! https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html


## Usually, we'll consider simplified forms $\Rightarrow$ plane waves.

## Ideal Beams

A plane wave is an electromagnetic field propagating with a fixed $\hat{s}$-vector.

http://labman.phys.utk.edu/phys222core/modules/m6/polarization.html

## Plane Waves

General

$$
\begin{gathered}
\boldsymbol{e}(\boldsymbol{x}, t)=\frac{1}{(2 \pi)^{4}} \int_{-\infty}^{\infty} d \boldsymbol{k} \int_{-\infty}^{\infty} d \omega \mathrm{e}^{-\mathrm{i}(\omega t-\boldsymbol{k} \cdot \boldsymbol{x})} \tilde{\boldsymbol{e}}(\boldsymbol{k}, \omega) \\
\Downarrow
\end{gathered}
$$

Sum of Plane Waves

Plane Wave

$$
\boldsymbol{e}(\boldsymbol{x}, t)=\frac{1}{2 \pi} \sum_{i} \int_{0}^{\infty} d \omega \tilde{\boldsymbol{A}}^{(i)}(\omega) \mathrm{e}^{-\mathrm{i} \frac{\omega}{c}\left(c t-\hat{\boldsymbol{s}}^{(i)} \cdot \boldsymbol{x}\right)}+\mathrm{c} . \quad \text { c. }
$$

$\Downarrow$

Polarized Plane Wave

$$
\boldsymbol{e}(\boldsymbol{x}, t)=\frac{1}{2 \pi} \int_{0}^{\infty} d \omega \tilde{\boldsymbol{A}}(\omega) \mathrm{e}^{-\mathrm{i} \frac{\omega}{c}(c t-\hat{\boldsymbol{s}} \cdot \boldsymbol{x})}+\text { c. c. }
$$

$\Downarrow$

$$
\boldsymbol{e}(\boldsymbol{x}, t)=\frac{\hat{\boldsymbol{\epsilon}}}{2 \pi} \int_{0}^{\infty} d \omega \tilde{A}(\omega) \mathrm{e}^{-\mathrm{i} \frac{\omega}{c}(c t-\hat{\boldsymbol{s}} \cdot \boldsymbol{x})}+\text { c. } \boldsymbol{c}
$$

## Plane Waves

Polarized plane waves have both a propagation axis $\hat{s}$ and a polarization vector $\hat{\boldsymbol{\epsilon}}$

https://en.wikipedia.org/wiki/Polarizer

## Take-Home Points

In general: Electromagnetic fields are complicated!
A plane wave is an EM field with a well-defined propagation axis $\hat{\boldsymbol{s}}$

A polarized plane wave has both a propagation axis $\hat{s}$ and a polarization vector $\hat{\boldsymbol{\epsilon}}$

Polarization comes in several flavors: Circular, eliptical, linear.

