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Last time on CHEM676:

The Lorentz Force Law:

FEM ≈ qe(r, t) +
q

c
v × b(r, t)

Maxwell’s Equations:

∇ · e = 4π%(x, t)

∇ · b = 0

∇× e+ 1

c

∂b

∂t
= 0

∇× b− 1

c

∂e

∂t
=

4π

c
j(x, t)

Today: How does the EM field propagate in vacuum?
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Outline for Today:

1 Decoupling the Electric and Magnetic Fields

2 Propagating Waves

3 Oscillating Signals: The Fourier Basis

4 Plane Waves
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Maxwell’s Equations in Vacuum:
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∇ · b = 0

∇× e+ 1

c

∂b

∂t
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∇× b− 1

c
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= 0
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c2
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= 0.
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Decoupling the Electric and Magnetic Fields

A Dirty Trick

Use the vector identity:

∇× (∇× v) = −∇2v +∇(∇ · v)

to get

0 = ∇× (∇× e(x, t)) + 1

c2
∂2e(x, t)

∂t2

= −∇2e(x, t) +(((((((∇(∇ · e(x, t)) + 1

c2
∂2e(x, t)

∂t2

or (
1

c2
∂2

∂t2
−∇2

)
e(x, t) = 0.

This is the homogeneous wave equation.
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Decoupling the Electric and Magnetic Fields

Take-Home Point

In vacuum, Maxwell’s equations imply that each
component of the electric field obeys the homoge-
neous wave equation (HWE).

NB: The same result holds for the magnetic field!

So what?
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Propagating Waves

Propagating Waves

The (one-component) wave equation(
1

c2
∂2

∂t2
−∇2

)
f(x, t) = 0

is solved by any function f of the form f(ŝ · x± ct).

Check it!

Displacement along the unit vector ŝ is equivalent to a
shift in time, i.e. the solution propagates at speed c.
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Propagating Waves

Take-Home Point

Solutions to the HWE can take any form that prop-
agates at the speed of light.
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Oscillating Signals: The Fourier Basis
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Oscillating Signals: The Fourier Basis

The Fourier Basis

The HWE is solved by any propagating function. So why do we usually
think of “light waves” as oscillatory?

1 Many physical sources have well-defined frequencies
2 All waves can be represented as a sum of oscillatory signals

Fourier decomposition

http://mathworld.wolfram.com/FourierSeries.html
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Oscillating Signals: The Fourier Basis

The Fourier Basis

The Fourier transform tells you the amplitude and phase
of a given frequency component in a signal.

1D Fourier transform:

g̃(ω) =

∫ ∞
−∞

dt eiωtg(t).

Inverted by:

g(t) =
1

2π

∫ ∞
−∞

dω e−iωtg̃(ω).

http://mriquestions.com/fourier-transform-ft.html

Note: Widths are inversely related!
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Oscillating Signals: The Fourier Basis

4D Fourier Transform

In electrodynamics, we use a 4D transform:

ẽ(k, ω) =

∫ ∞
−∞

dx

∫ ∞
−∞

dt ei(ωt−k·x)e(x, t)

e(x, t) =
1

(2π)4

∫ ∞
−∞

dk

∫ ∞
−∞

dω e−i(ωt−k·x)ẽ(k, ω).

The individual frequency/wavevector components in
ẽ(k, ω) can be physically separated using a prism!
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Oscillating Signals: The Fourier Basis

NB: The FT is completely
general! Any field can be
decomposed as an integral of
Fourier components.

What are the characteristic
features of HWE solutions in
Fourier space?
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Oscillating Signals: The Fourier Basis

The FT Derivative Property

The FT converts differential equations to algebraic equations:

d̃g

dt
= eiωtg(t)

∣∣∞
−∞ − iω

∫ ∞
−∞

dt eiωtg(t) = −iωg̃(ω),

For the HWE, this implies(
−ω

2

c2
+ k2

)
ẽ(k, ω) = 0

⇓
ω = ck.

This is the vacuum dispersion relation connecting frequency and
wavelength (1/k).
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Oscillating Signals: The Fourier Basis

Take-Home Points

The Fourier Transform splits signals into frequency
components.

Using a 4D FT, we can split the field into frequency
components in both time and space.

The FT converts differential equations into algebraic
equations. In vacuum, the HWE implies the disper-
sion relation ⇒ ω = ck.
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Plane Waves
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Plane Waves

Plane Waves

In general, electromagnetic fields can be very complex!
https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html

Usually, we’ll consider simplified forms
⇒ plane waves.
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Plane Waves

Ideal Beams

A plane wave is an electromagnetic field propagating with
a fixed ŝ-vector.

http://labman.phys.utk.edu/phys222core/modules/m6/polarization.html
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Plane Waves

Plane Waves

General

Sum of Plane
Waves

Plane Wave

Polarized
Plane Wave

e(x, t) =
1

(2π)4

∫ ∞
−∞

dk

∫ ∞
−∞

dω e−i(ωt−k·x)ẽ(k, ω)

⇓

e(x, t) =
1

2π

∑
i

∫ ∞
0

dω Ã(i)(ω)e−i
ω
c (ct−ŝ

(i)·x) + c. c.

⇓

e(x, t) =
1

2π

∫ ∞
0

dω Ã(ω)e−i
ω
c (ct−ŝ·x) + c. c.

⇓

e(x, t) =
ε̂

2π

∫ ∞
0

dω Ã(ω)e−i
ω
c (ct−ŝ·x) + c. c.
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Plane Waves

Plane Waves

Polarized plane waves have both a propagation axis ŝ
and a polarization vector ε̂

https://en.wikipedia.org/wiki/Polarizer
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Plane Waves

Take-Home Points

In general: Electromagnetic fields are complicated!

A plane wave is an EM field with a well-defined
propagation axis ŝ

A polarized plane wave has both a propagation axis
ŝ and a polarization vector ε̂

Polarization comes in several flavors: Circular, elipti-
cal, linear.
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