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Chapter 1

Introduction

1.1 Fundamental Concepts

Spectroscopy is the study of interactions between light and matter. In many cases, the
objective of a spectroscopic experiment is to learn something about the material system
involved, as when a chemist measures the infrared spectrum of a new compound to char-
acterize its structure. In others, the electromagnetic field itself is the essential quantity,
as in the passage of high-speed internet signal through fiber-optic cables. In all cases,
however, understanding a spectroscopic measurement requires a knowledge of three things:
the electromagnetic field, the material system, and the physical interactions between them.

For most of us, the basic properties of matter are comparatively intuitive, due both
to direct experience (we can feel, touch, and see matter) and to education. (Most of
undergraduate chemistry and much of undergraduate physics are devoted to learning about
the properties of material systems.) Although the quantum-mechanical rules governing
matter at the molecular scale may not always be intuitive, for most purposes we can ignore
the difficult concepts and think in terms of intuitive classical models such as ball-and-spring
descriptions of molecular mechanics.

In contrast, the electromagnetic (EM) field can often feel abstract and unfamiliar. Al-
though we can indeed see light and feel its warmth, these direct experiences offer little intu-
ition about its microscopic properties. Moreover, the vector calculus inherent in Maxwell’s
equations (the fundamental equations of the electromagnetic field) constitutes a roadblock
to many beginning students even in mathematically-inclined sciences such as physics and
chemistry.

Although experience and hard work are the only tools that can entirely overcome these
barriers, it is helpful to build a basic conceptual picture of what the electromagnetic field is
and how it behaves before embarking on a rigorous mathematical study. This is the focus
of the current chapter.

7



8 Chapter 1. Introduction

1.2 What is a field anyway?
Perhaps the most fundamental conceptual difficulty in electrodynamics is answering the
simple question: What exactly is the electromagnetic field?

Like many ontological questions in science, the question defies a simple answer. Indeed,
any answer we provide will ultimately lead us to further difficult questions; for example,
“What is charge?”, “What is mass?”, “What is gravity?”, or even “What is energy?” Such
questions are difficult to answer concretely since they ask us to quantify in more basic terms
entities that seem fundamental to the world around us. Fortunately, science is an empirical
project and it suffices for our purpose to define abstract quantities by their effects in the
physical world. Mass, for example, may be a difficult quantity to define abstractly, but it
is easy to identify in practice: mass, we might say, is the stuff that makes objects heavy.
Gravity, likewise, may appear obscure as an abstract concept, but we readily understand its
physical significance when we drop a cup of coffee.

In the same way, the electromagnetic field is an abstract quantity that (like mass, charge,
or gravity) we postulate to exist in order to explain the behavior of the world around us.
In short, although it may be difficult to quantify physically what the electromagnetic field
is, we can certainly describe physically what it does. In fact, the analogy between the
electromagnetic field and the gravitational field proves to be a surprisingly useful one. Just
as the gravitational field is what causes massive objects to interact, the electromagnetic
field is what causes charged objects to interact. Just as the mass of an object defines the
strength of its gravitational interactions with other objects, the charge of an object defines
the strength of its electromagnetic interactions.

At a conceptual level, this description is perhaps the most fundamental answer we can
provide to our original question: the electromagnetic field is the physical quantity that
mediates interactions between charged particles.

1.2.1 The field as a force map
To bemore precise, the electromagnetic field is in fact a composite of two distinct but closely
related quantities – the electric field and the magnetic field. Together, these two quantities
determine both the electric andmagnetic forces that are so central to the dynamics of charged
particles. Unlike mass or charge, however, the electric and magnetic fields are properties
of an entire physical system and cannot be attributed to individual particles or groups of
particles. In fact, although we sometimes speak informally of the field produced by a single
particle or component of a system, in the end only the total field has physical meaning. In
principle, there is a single electromagnetic field that describes the entire universe!

As one might expect, any physically-informative quantity that describes the state of an
entire universe must encode a tremendous amount of information. The electromagnetic
field accomplishes this task by varying its value as a function of position in space. In fact,
this is exactly what the term “field” means in the context of mathematical physics: a field is
simply a function of three-dimensional space. In a very real sense, the electric and magnetic
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fields may thus be considered as special kinds of “maps” of the universe; their values at a
given point in space tell us about the forces that would be experienced by a charged particle
at that location. Since the force felt by a particle is a vector quantity (i.e. it has distinct
components along the three spatial axes x, y, and z), the electric and magnetic fields are
likewise vector fields, i.e. their values at any given point in space are vector quantities.
More specifically:

• The electric field e(r) is proportional to the force that would be experienced by a very
small stationary particle with a very small charge at the location r in space.

• The magnetic field b(r) describes the additional force (i.e., in addition to the force
from the electric field) that would be experienced by a very small moving particle
with a very small charge at a given position r in space.

If the repeated use of the phrase “very small” seems rather vague here, you’re absolutely
right. The force law stated here is in fact an approximation that studiously avoids the
mathematical complications inherent in a rigorous treatment. Although this approximate
expression will be sufficient for all applications in this course, Section 1.4 gives a brief
explanation of exactly what complications we’re avoiding and how they could be handled
rigorously.

Mathematically, these two statements are embedded in a fundamental equation known
as the Lorentz Force Law:

FEM ≈ qe(r, t) +
q
c
v × b(r, t). (1.1)

HereFEM represents the electromagnetic force experienced by a particle of charge q located
at the position r and moving with a velocity v, and c is the speed of light.1 The symbol
× is a vector cross product, indicating that the magnetic force is perpendicular both to the
orientation of the magnetic field and to the particle velocity. In contrast, the force exerted
by the electric field is independent of velocity and is always parallel to the electric field.
Our use of the approximation symbol “≈” rather than equality “=” is a nod to the “very
small” approximations mentioned above (see Section 1.4).

Two points are worth emphasizing here. First, note that we regard the electric and
magnetic fields as physically meaningful quantities even in those regions of space where
there are no charged particles to interact with them. Although this might sound like a merely
formal statement, it turns out to have profound consequences for our understanding of the
physical dynamics of electric and magnetic fields.

Second, although we have provided a working definition of the electric and magnetic
fields in terms of their influence on their surroundings, such a definition is void of physical
meaning unless we also know how to predict the fields themselves from first principles.

1In the study of electrodynamics, we opt to use the centimeter-gram-second (CGS) system of units rather
than the International System of Units (SI) to simplify the form of the equations. The speed of light does not
enter into the SI version of Eq. 1.1.
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Formally, all physical properties of the electromagnetic field are embedded in a set of
four relations known collectively as Maxwell’s Equations after the Scottish scientist James
Clerk Maxwell who (although he did not discover them) formulated them together into a
coherent theory of electromagnetism. Together with the Lorentz Force Law of Eq. (1.1)
and Newton’s equations for material dynamics, Maxwell’s Equations provide a complete
description of the dynamics of both the electromagnetic field and the material systems with
which it interacts. Unfortunately, the physical intuition embedded in these equations is
often rather obscure to those encountering them for the first time. The next section offers a
glimpse at this physical content, in preparation for the more technical discussion in the next
chapter.

A Field by Any Other Name
One of the reasons electrodynamics can be confusing is that there are at least three

distinct physical quantities that are sometimes referred to as the “electric field”, and
another three for the magnetic field. The quantities e(x) and b(x) defined by Eq.
(1.1) are what are more precisely termed themicroscopic electric field andmicroscopic
magnetic field. Fundamentally, these fields are the basic quantities from which the
other “fields” are derived. In the next chapter, we will introduce the macroscopic fields
E(x) and B(x) which are obtained from the microscopic fields by coarse-graining
over a small region of space. Finally, the derived fieldsD(x) andH(x) combine the
macroscopic fields with the polarization of the surrounding material. All six of these
quantities play important roles in electrodynamics, but they should not be confused
with each other. In this text, we will primarily be concerned with the macroscopic
fields, although in the first two chapters we will deal at some length with microscopic
fields to see how they give rise to macroscopic electrodynamics.

1.2.2 The field as a flow map
So far, we have spoken of the electromagnetic field as a vector-valued map of electrical
and magnetic forces. To understand the equations defining the field, it is helpful to view
it from the slightly different (although compatible) perspective of a flow map. For most
people, flow maps are perhaps more familiar in the context of water or air currents. For
example, flowmaps for global water currents depict the flow of water in oceanic cycles such
as the gulf stream that warms eastern North America and western Europe. Mathematically
speaking, the quantity represented in such maps – the magnitude and direction of water flow
as a function of location – is a vector field, just like the electric and magnetic fields.

Borrowing intuitively from these more concrete examples, it turns out to be extremely
useful to envision the electric and magnetic fields as similarly describing the flow of some
(fictitious) electric or magnetic fluid through space. At each location in space, the field is
then pictured as representing the magnitude and direction of flow of these imaginary fluids.
It must be emphasized that such a picture should not be interpreted literally! Like all useful
models, it is simply an analogy between one abstract quantity (the electric or magnetic
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fields) and another, more familiar, one (the velocity field of a flowing current).
In this picture, the first two of Maxwell’s equations embody rather intuitive concepts:

electric charges act as either “sources” (positive charges) or “sinks” (negative charges) for
the (fictitious!) electrical fluid. The magnetic fluid, in contrast, has no sources or sinks.
More formally:

1. Gauss’s Law says that the total flow rate of electrical fluid out of any closed surface
is proportional to the total charge enclosed by the surface.

2. Gauss’s Law for Magnetism says that the total flow rate of magnetic fluid out of any
closed surface is zero.

The mathematical statement of Gauss’s law is that

∇ · e = 4π%(x, t) (1.2)

where ∇ · e is the divergence

∇ · e =
∂ex

∂x
+
∂ey
∂y
+
∂ez

∂z
(1.3)

and where %(x, t) is the charge density function, defined by the property that the integral∫
V

dx %(x, t) (1.4)

gives the total charge contained in the volume V at time t. Without prior knowledge of
multivariate calculus, it is by no means obvious that Eq. (1.2) is equivalent to a statement
about flow rate through a surface. This connection is explained more precisely in the framed
box below.

While Gauss’s law says that charges act as sources and sinks for the electric field,
Gauss’s law for magnetism says that there are no sources or sinks for the magnetic field.
Mathematically, this means that

∇ · b = 0. (1.5)

At first, this non-existence of a sources might appear puzzling. If there are no magnetic
“charges”, then what does produce the magnetic field? As we will see next, the answer to
this question lies embedded in the remaining two equations of Maxwell’s theory.

Gauss’s Theorem and the Differential form of Maxwell’s Equations
To see the connection between the divergence operator∇· and flux through a surface,

consider a simple quasi-two-dimensional example. Imagine an incompressible fluid
flowing through a thin rectangular slab, as illustrated in Figure 1.1. For simplicity,
we’ll assume that the fluid flows only in the xy plane, so that we can ignore any flow
in the z direction. In the two-dimensional projection on the bottom left, curved lines
represent the pathways that would be followed by a small particle carried by the fluid.
The density of these lines indicates the total velocity of the fluid in each region (more
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Figure 1.1: Flow rate of a fluid through a small region in two dimensions.

lines means a higher flow rate). Note that, because the fluid is assumed incompressible
(a very accurate approximation for most real liquids), the density is constant throughout
the fluid – only the fluid velocity varies with position. We now wish to ask: If we know
the velocity field v(x) of the fluid, how can we calculate the total rate at which fluid
enters or exits the enclosed region?

The question is difficult to answer directly for the large region on the left since the
flow rate varies considerably along the perimeter. However, for a sufficiently small
rectangle (as shown at larger scale on the right-hand side), the flow rate can be assumed
essentially constant along each of the four sides, so that the flow rate is characterized
completely by the four velocity components vx(0), vx(dx), vy(0), and vy(dy), as labeled
in the figure. For example, the flow rate of fluid into the region through the left-hand
wall is simply vx(0)dydz, while the flow rate out of the right-hand wall is vx(dx)dydz.
(Note that the total flow rate is proportional to dydz, the surface area of the wall.)
Since the two flows have opposite signs, the total flow rate out of the region through
the vertical walls is then

v
(vert)
out = (vx(dx) − vx(0)) dydz. (1.6)

The same analysis indicates that the total flow rate of fluid out of the horizontal walls
is just

v
(horiz)
out =

(
vy(dy) − vy(0)

)
dxdz. (1.7)

Since we assumed the fluid to be flowing only in the xy plane, we can ignore fluid flow
through the two surfaces perpendicular to the z axis, i.e., the top and bottom of the 3D
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rectangle in the fiture.) The total flow rate of fluid out of the rectangle is thus

vout = v
(vert)
out + v

(horiz)
out =

(
vy(dy) − vy(0)

)
dxdz + (vx(dx) − vx(0)) dydz. (1.8)

Now, since the total volume of our rectangle is dxdydz, we can define a outward flow
rate per unit volume as vout

dx dy dz which, as dx, dy, dz → 0 converges to the limiting value

lim
dx,dy,dz→0

vout
dx dy dz

=
∂vx

∂x
+
∂vy

∂y
. (1.9)

An analogous calculation shows that if we had allowed the fluid to flow also along
the z axis we would have obtained an additional term ∂vz

∂z , so that the general expression
for the flow rate per unit volume of a 3D rectangle is exactly the divergence ∇ · v [Eq.
(1.3)] of the velocity flow field.

Finally, observe that the flow rate out of the large rectangle is simply the sum of the
flow rates out of the small rectangles. Although we won’t carry out the mathematical
limit formally, the result is that in the limit that the number of rectangles goes to infinity,
we obtain

v
(total)
out = lim

N→∞

∑
n

v
(n)
out =

∫
dx

∫
dy ∇ · v(x, y). (1.10)

When the total flow rate v(total)out is written as a surface integral over the velocity density,
this last result is known in mathematics as Gauss’s Theorem. It is this law that allows
us to translate between the fluid flow density at a single point (characterized by the
divergence) and the total flow rate through a closed surface as in our verbal statement
of Gauss’s laws for electricity and magnetism.

1.2.3 The field as a propagating wave
When the effects of electricity and magnetism were first discovered, they were viewed as
separate quantities. Magnetic objects interacted with magnetic objects, and charged objects
interacted with charged objects. Magnetic objects (it was believed) did not interact with
charged objects or vice versa. The first two of Maxwell’s equations (which we have just
described) are consistent with this picture.

The essential content of Maxwell’s last two equations, however, is that the electric and
magnetic fields are in fact intricately connected. The reason this connection was at first
missed is that it arises only for dynamic fields and vanishes under static conditions. In short,
while it is true that a stationary magnet feels no force exerted on it by a stationary charged
particle (and vice versa), the two objects do interact if they are in motion relative to each
other.

Specifically, the final two of Maxwell’s equations may be described as follows:
3. The Maxwell-Faraday Equation says that temporal changes in the magnetic field
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produce “swirls” in the electric field.

4. Ampere’s Law says that both flowing currents and temporal changes in the electric
field produce “swirls” in the magnetic field

The word “swirl” here has a technical meaning, of course, but it is closely connected
to the familiar notion of a swirl, eddy, or vortex in a flowing current. (See the box below.)
Mathematically, the amount of “swirl” at a given location in a vector field (e, for example)
is represented by the curl of the field

∇ × e =


∂ez
∂y −

∂ey
∂z

−
∂ez
∂x +

∂ex
∂z

∂ey
∂x −

∂ex
∂y

 . (1.11)

If you point the thumb of your right hand in the direction of ∇ × e, the swirl of the e field
occurs in the same direction in which your fingers curl.

In terms of the curl, Maxwell’s equations read

∇ × e +
1
c
∂b

∂t
= 0 (1.12)

and

∇ × b −
1
c
∂e

∂t
=

4π
c
j(x, t), (1.13)

where j(x, t) is the current density, defined by the property that the total flow rate of
electrical charge across any surface S is given by∮

S
dS j · n̂, (1.14)

where the integral extends over the entire surface S and where at each point on the surface
S, the unit vector n̂ extends in an outward direction, perpendicular to the surface.

Curls and Swirls
To see that the curl of Eq. (1.11) does indeed have something to do with “swirls” in

flowing currents, consider again a simple two-dimensional example. Imagine a small
stick floating on top of an eddy on the surface of a stream, as depicted on the left side of
Figure 1.2. (The top panel depicts the stick oriented vertically along the y axis, while
the bottom panel depicts the stick aligned horizontally with the x axis. We’ll consider
each case separately.) Now we ask: If the stick flows freely with the water, how fast
does it rotate in the xy-plane?

Let’s examine the vertically-oriented scenario first (top left). Beginning with a
vertically-oriented stick at time t = 0, the top of the stick moves toward the right with
velocity Ûxtop = vx(dy). At the same time, the bottom of the stick moves to the left by a
displacement Ûxbottom = vx(0). Now, at any time, the angle θ formed by the stick with
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Figure 1.2: Schematic illustration of “swirls” in a velocity vector field.

the y axis is just

θ(t) = arcsin
(

xtop(t) − xbottom(t)
ytop(t) − ybottom(t)

)
. (1.15)

If the angle is very close to zero – as it should be for an initially-vertical stick and
a short time interval dt – the series expansion sin(θ) = θ − θ3

6 + ... implies that
θ(t) ≈ xtop(t)−xbottom(t)

ytop(t)−ybottom(t)
. Moreover, since the denominator changes only slightly, for small

enough dt it can be assumed constant as ytop(t) − ybottom(t) = ytop(0) − ybottom(0) = dy.
The rate at which θ(t) changes is thus simply

Ûθ ≈
Ûxtop(t) − Ûxbottom(t)

dy
=

vx(dy) − vx(0)
dy

, (1.16)

which for a very short stick tends to the limit

lim
dx,dy→0

Ûθvert =
∂vx

∂y
. (1.17)

Repeating this analysis for the horizontally-oriented stick, we find that in this case

Ûθhoriz ≈ −
∂vy

∂x
. (1.18)
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The negative sign appears because the right end of the stick now moves down along
the y axis. On average, then, we find that an object dropped with a random orientation
onto the eddy moves with an angular velocity

ωavg =
Ûθvert + Ûθhoriz

2
=

1
2

(
∂vx

∂y
−
∂vy

∂vx

)
. (1.19)

Comparison with Eq. (1.11), shows that up to a factor of two and a sign change, this is
just the z-component of the curl of the velocity vector field v(x, y, z). Note that for an
eddy “swirling” with the opposite sense (counterclockwise) ωavg would have the same
magnitude but an opposite sign. Thus, interpreted as a velocity flow map, the curl of a
vector field indicates both the magnitude of “swirls” and their sense of rotation.

Fundamentally, these relations indicate a close coupling between the dynamics of the
electric and magnetic fields: a changing E-field induces changes in the B-field and vice
versa. In addition, Ampere’s law tells us something quite important about the physical
effects of moving charges, i.e. of electrical currents. We already know (from Gauss’s law)
that moving electrical charges produce changes in the electric field. Ampere’s law tells us
in addition that moving electrical charges produce magnetic fields. At a fundamental level,
these two equations thus explain why magnetic fields exist even in the absence of “magnetic
charges”: the ultimate origin of the magnetic field is in electrical charges, just as for the
electric field. The difference is that the magnetic field is produced by moving electrical
charges (or temporal changes in the electric field), while the electrical field is produced by
static charges2 (or temporal changes in the magnetic field).

This dynamical coupling between the electric and magnetic fields has profound impli-
cations for the laws of physics. Because the two fields exist and interact even in regions
of space where there are no electrical charges, the coupled electric and magnetic fields
can propagate through space even in the absence of any material medium. Conceptually,
this propagation can be visualized as follows: A changing electric field at one location in
space (e.g. originating from the motion of charged particles) induces a magnetic field in the
regions adjacent to it; since the electric field is changing in time, these induced magnetic
fields also change in time. Now, these changing magnetic fields (a small distance away from
the initial source) likewise produce changing electric fields in their vicinities, which in turn
induces magnetic fields even farther from the original source.

Mathematically, this propagating field behaves like a propagating wave, much like a
ripple on the surface of a pond – only without the pond! Physically, this propagating
electromagneticwave is recognized as electromagnetic radiation. Electromagnetic radiation
of certain frequencies (i.e. certain length of “ripples”) is detectable by the human eye and
is recognized as light, although we will usually use the terms “electromagnetic radiation,”
“electromagnetic waves,” and “light” interchangeably. The interaction of these propagating
fields with material systems constitutes the whole subject of spectroscopy.

2Of course, moving charges also produce electric fields, in addition to magnetic fields.
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1.3 Light-Matter Interactions & Spectroscopy
So far, we’ve touched on three of the main principles that are at work in any spectroscopic
experiment. In no particular order:

1. All matter is made of charged particles.

2. Electromagnetic waves, consisting of an oscillating electric and magnetic field, exist.

3. Electromagnetic waves exert an oscillatory force on the charged particles that make
up matter in accordance with the Lorentz force law.

In fact, we’re missing just a single detail to (very broadly) summarize most of spec-
troscopy

4. When a charged particle is accelerated (or decelerated) it radiates electromagnetic
waves.

This last point is not obvious from simply looking at Maxwell’s equations and the Lorentz
force law, but it is not to hard to show that this is indeed the case. (In fact, we will see this
explicitly in §2.3.4, but for now let’s take it on faith.)

Essentially, spectroscopy consists of these four steps. There’s some stuff (made of
charged particles) that we’re interested in learning about (maybe it’s a molecule). We shine
electromagnetic waves on the stuff that exert an oscillatory force on the charged particles
in the stuff, causing the charged particles to accelerate. As the charged particles accelerate
back and forth, they emit more electromagnetic waves that we then measure. Sometimes
we can detect these waves directly (such as in fluorescence), and other times we can only
detect these wave via interference with the waves we’re shining in (such as in absorption).

What do thesewaves tell us about the stuff? Let’s consider amolecule to bemore specific.
In addition to the force we’re applying by shining light on the charges in the molecule, there
are a plethora of electrostatic forces binding these charges together. This means that
the charges can only oscillate resonantly at certain frequencies that are determined by the
binding forces in the molecule. So by discovering which frequencies cause a large response,
we learn about the molecular binding forces and thus the molecular structure. Other times,
we’ll be interested in learning about the dynamics of the charged particles, and this is where
time-resolved spectroscopic techniques come in.

This raises the question of what waves we should be sending into our system in order to
best study it. To this end, there are essentially two approaches. First, we may send in waves
of a well defined frequency and scan this frequency until we see a large response. In this way,
we canmap out the resonances in the systemover broad frequency ranges. On the other hand,
we may try to “kick” the system as hard as we can with a short pulse of light and observe at
which frequencies the resonances occur. These methods, termed “continuous wave” (CW)
and “pulsed”, respectively, fundamentally give the same information, but oftentimes one
is preferable over the other due to practical considerations or ease of obtaining the desired
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information. We will largely focus on pulsed experiments in what follows, but we’ll have
occasion to discuss CW techniques as well.

Before diving in to mathematically describing the phenomena discussed in this section,
there’s a fundamental aspect we need to address. The charged particles we have been
discussing are, for our purposes, point particles – particles with no spatial extent, existing
at a single point in space. While this description turns out to be physically correct3 (at least
as far as we can tell), it introduces some technical difficulties in the equations that we now
address.

1.4 Inconvenient Infinities
As emphasized in the description of the Lorentz force law [Eq. (1.1)], our formulation of
electrodynamics employs a number of simplifying assumptions. Although these simplifica-
tions are standard in most textbooks, they can themselves create substantial confusion since,
if not introduced and interpreted consistently, they can actually render many fundamental
equations mathematically undefined. This section examines these issues in more detail.

Fundamentally, these complications arise from an apparently simple physical question:
What are the physical dimensions of a charged particle? In the early days of electrodynamics
(before the introduction of quantum theory), charged particles were typically assumed to
be concrete objects with finite spatial dimensions, e.g., spheres or ellipsoids of a (roughly)
fixed size. Under this classical theory, our statement of the Lorentz force law [Eq. (1.1)]
cannot be fundamentally correct since it samples the field at only a single point: a charged
particle with a finite size ought instead to “feel” the electric and magnetic fields at all
points within its volume. Although we could incorporate such finite-size effects into our
equations by integrating over the charge volume, the additional complication is, for our
purpsoses, entirely unnecessary. So long as the particle dimensions are very small and we
only consider dynamics on length scales much larger than those dimensions, Eq. (1.1) will
be an excellent approximation to (classical) reality. This first simplifying assumption will
be maintained throughout this course, i.e., we will always neglect any finite spatial extent
of fundamental particles.

In electrodynamics, this neglect of finite-size effects is usually summarized by saying
that we deal only with point particles: objects that have a finite charge but no finite spatial
extent. In many cases, the point-particle perspective drastically simplifies the mathematical
complexity of electrodynamic expressions and allows for much simpler physical interpre-
tation of their content. Unfortunately, if not introduced carefully, the point-particle ap-
proximation also introduces serious internal inconsistencies into the fundamental equations
of electrodynamics. In short, although extremely useful, the point-particle approximation
must be applied with care!

3It is at least correct for electrons. Nuclei contain protons and neutrons, which in turn contain up quarks
and down quarks. Even though the quarks in the nucleus are the only point particles, it’ll be an excellent
approximation to treat the nucleus itself as a point particle at all the energies we’ll be considering.
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To see how inconsistencies can arise (and how to avoid them) consider the charge and
current densities ρ(x, t) and j(x, t) introduced in the last section. In a strict point-particle
theory, the charge and current densities take the form

%(x, t) ≈
∑

n

qnδ (x − rn) (1.20)

and

j(x, t) ≈
∑

n

qnvnδ (x − rn) (1.21)

where qn, rn, and vn are, respectively, the charge, position, and velocity of the nth particle
and the use of the approximation sign “≈” again serves to highlight that these equations are
only valid when finite-size effects can be neglected. The function δ(x) in Eqs. (1.20) and
(1.21) is the Dirac delta function defined by the property4 that, for any three-dimensional
volume V , ∫

V
dxδ(x − xo) f (x) =

{
f (xo), xo ∈ V

0, xo < V . (1.22)

Thanks to this ability to eliminate integrals, working with delta functions considerably
simplifies many otherwise-difficult mathematical expressions. In electrodynamics, its ap-
pearance in the charge and current densities reflects the fact that particles with no finite
spatial extent contribute either all or none of their charge to integrated quantities (such as
the total charge of Eq. (1.4) or the charge flow rate of Eq. (1.14)) depending on whether or
not they are contained inside the integration volume.

Unfortunately, it is easily verified that no realmathematical function satisfies the property
(1.22) used to “define” the Dirac delta function. The proper resolution to this inconsistency
is either to abandon the point-particle picture altogether or to invoke more powerful math-
ematical tools such as distribution and measure theory. Instead, physical scientists tend
to “embrace the paradox,” opting for the intuitive appeal of Eq. (1.22), despite its internal
inconsistency. Perhaps surprisingly, this approach works just fine for most electrodynamic
calculations. For example, Gauss’s law [Eq. (1.2)] and Ampere’s law [Eq. (1.13)] remain
mathematically rigorous (in a distribution-theory sense) even when the delta-function forms
for ρ(x, t) and j(x, t) are introduced on their right-hand sides. The use of delta functions
in Maxwell’s equations – and all equations derived solely from them – is thus internally
consistent.

However, the Lorentz force law – and certain expressions derived from it – become
ill-defined in the presence of delta-function densities. In fact, we will see in Section 2.3.3,
that the magnitude of the electric field always diverges as 1/r2 as the distance r to the
nearest point particle decreases (see Figure 1.3. Such divergences cause the Lorentz force

4Strictly speaking, the integral is undefined for points lying on the boundary of the volume. E.g., if V is a
closed sphere with xo lying on its surface, the integral has no well-defined value.
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Figure 1.3: Schematic illustration of the electric field in the vicinity of a finite-sized particle
(left) and point particle (right). Near a finite-size particle, the field approaches a stable
maximum, while it diverges in the vicinity of the point particle.

law [Eq. (1.1)] to become mathematically ill-defined since the electric field at the particle
position is infinite. A similar divergence is encountered in calculations involving the total
energy content of the electromagnetic field [Eq. (2.50)] due to the infinite self-energy of
each point particle repelling itself.

A self-consistent point-particle theory can be developed by eliminating such infinities
“by hand,” e.g., by replacing the electric field in Eq. (1.1) with the “effective field”

e(eff) = lim
r′→r

(
e(r′) − q

r

|r′ − r |2

)
(1.23)

to obtain
FEM = qe(eff) + q

v

c
× b(r), (1.24)

which eliminates self-interaction terms from the force. This approach is exactly what is
necessary, for example, to produce the Coulomb force [Eq. (2.83)] that governs particle-
particle interactions in the near-field limit.

In this course, we will regard Eq. (1.24) as the fundamental equation that, together
with Maxwell’s equations, defines point-particle electrodynamics. On the other hand, our
earlier statement, Eq. (1.1), is an approximate expression that defines the total force felt by
a finite particle which is small enough that spatial variations in the field can be neglected.
Thus both statements [Eqs. (1.1) and (1.24)] are to be understood as approximations to a
more rigorous classical electrodynamic theory that involves finite, rigid, spherical, charged
particles.5

5In a rigorous quantum field theoretic treatment of fundamental particles these infinites cannot be swept
under the rug since fundamental particles are indeed point particles (as far as we can tell). This has led
scientists to come up with clever (albeit confusing) ways to deal with the equations that have produced the
most accurate physical theories to date.
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With this warning stated, it should be emphasized that the distinction between Eqs. (1.1)
and (1.24) will usually be irrelevant to our work. In fact, only in Section 2.2 does the
distinction play any fundamental role; and, even in this case, the only results that we
use regularly (the definitions for the vacuum electromagnetic energy density and Poynting
vector) are independent of the representation.
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Chapter 2

Electrodynamics

The last chapter introduced four fundamental equations for electrodynamics:

∇ · e = 4π%(x, t) (2.1a)
∇ · b = 0 (2.1b)

∇ × e +
1
c
∂b

∂t
= 0 (2.1c)

∇ × b −
1
c
∂e

∂t
=

4π
c
j(x, t) (2.1d)

which, together with the Lorentz force law [Eq. (1.1)] and Newton’s equations provide a
complete description of the dynamics of charged particles. In practice, of course, actually
solving these equations is quite difficult. In this section, we begin with a discussion of
electromagnetic fields in vacuum, before turning to the much more complicated topic of
electrodynamics in material systems.

2.1 The Electromagnetic Field in Vacuum

2.1.1 Decoupling the Electric and Magnetic Fields

In this section, we take the results of the previous section and derive the properties of the
electric and magnetic induction fields in vacuum (that is, in the absense of any matter),
focusing on electromagnetic waves which we commonly refer to as light. In the presense of
matter, the vacuum description breaks down, but it is a useful and accurate approximation
to electromagnetic fields propagating in rare media, such as air. Furthermore, it will set the
stage for the following chapter when we consider the interaction of electromagnetic waves,
that is, light, with macroscopic systems.

23
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In vacuum, Maxwell’s Equations read

∇ · e(x, t) = 0, (2.2a)
∇ · b(x, t) = 0, (2.2b)

∇ × e(x, t) +
1
c
∂b(x, t)
∂t

= 0, (2.2c)

∇ × b(x, t) −
1
c
∂e(x, t)
∂t

= 0. (2.2d)

At first, the coupling between the electric and magnetic fields makes these equations
look rather intimidating. A brief rearrangement, however, brings them into a much simpler
form. Taking the curl of Eq. 2.2c and using Eq. 2.2d to eliminate the curl ofB gives

∇ × (∇ × e(x, t)) +
1
c2
∂2e(x, t)
∂t2 = 0. (2.3)

We thus obtain a linear differential equation for the electric field alone, decoupled from the
magnetic field. In light of the vector identity

∇ × (∇ × v) = −∇2v + ∇(∇ · v) (2.4)

(valid for any vector field v) and Eq. (2.2a) for the electric field in vacuum, this becomes(
1
c2
∂2

∂t2 − ∇
2
)
e(x, t) = 0. (2.5)

An identical equation holds for the microscopic magnetic field.

2.1.2 Propagating Waves
Equation 2.5 is really three independent differential equations, one for each component of
the electric field. Each component equation has the form of the homogenous wave equation

1
c2
∂2 f
∂t2 −∇

2 f = 0. (2.6)

Remarkably, this equation is satisfied by any function of the form f (ŝ · x ± ct), where ŝ is
any unit vector. Indeed, a brief calculation reveals that

−∇2 f (ŝ · x ± ct) = −ŝ · ŝ f ′′(ŝ · x ± ct) = − f ′′(ŝ · x ± ct) (2.7)

and similarly that

∂2
t f (ŝ · x ± ct) = c2 f ′′(ŝ · x ± ct) (2.8)

Substituting these results into Eq. 2.6, shows that the equation is indeed satisfied.
Functions of the form f (ŝ · x ± ct) propagate in time without changing shape. That is,

at some instant in time, say t = 0, f will be a certain function of the spatial variable ŝ · x.
At some time τ later, f will have the same form as a function of x, but will be shifted in
the ŝ direction by an amount ±cτ. Choosing the minus sign results in propagation in the
+ŝ direction while the plus sign corresponds to propagation in the −ŝ direction.
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2.1.3 Fourier Transforms
The results from the previous section indicate that Eq. (2.5) may be solved by setting each
component of the electric field to a function ei(ŝi · x ± ct). This does not, however, tell
us immediately whether there are other possible solutions. To answer this more general
question, we make use of an mathematical tool of great value in spectroscopy: the Fourier
transform.

The Fourier transform of a single-variable function g(t) is defined as

g̃(ω) =

∫ ∞

−∞

dt eiωtg(t). (2.9)

The complex function g̃(ω) has a simple interpretation: the amplitude at a given ω is how
much of a particular frequency is present in the original function g(t), and the phase at a
given ω is the phase of that frequency component. In this way, a complicated function g(t)
can be broken into its basic frequency components in the same way that a musical chord can
be broken down into its constituent notes. The functions g̃(ω) and g(t) are referred to as a
Fourier transform pair. An important property of the Fourier transform is that it is linear,
as is evident from its definition.

The only function that carries within it a single frequency g(t) is the complex exponential
e−iω0t , whose transform is a delta function at ω0. The cosine function cos(ω0t)which is just
the sum of eiω0t/2 and e−iω0t/2 has a Fourier transform with two frequency components:
delta functions at ±ω, as we expect from the linearity of the transform. Table 2.1 lists a few
of the most useful transforms and properties.

The Fourier transform of a function that’s narrow in the time domain is broad in the
frequency domain and vice versa. This is because in order to have a narrow time-domain
function, it is necessary for many frequencies to contribute to coherently add to give a
signal localized in time. This has profound consequences in spectroscopy. A molecule
with a sharp absorption resonance (narrow in the frequency domain) posses a transition
dipole that oscillates for a long time (broad in the time domain). This allows, under certain
circumstances, for the lifetime of transition to be determined from the width of the spectrum.

g(t) g̃(ω)

e−iω0t 2πδ(ω − ω0)
cos(ω0t + φ) π

(
δ(ω + ω0)eiφ + δ(ω − ω0)e−iφ)

e−at cos(ω0t + φ)u(t) (iω−a) cos φ+ω0 sin φ
(iω−a)2+ω2

0

e−
t2

2σ2
√

2πσe− 1
2σ

2ω2

g(t − t0) g̃(ω)eiωt0

g(t)eiω0t g̃(ω + ω0)

Table 2.1: Fourier transform of common functions. u(t) is the unit step function

Importantly, the Fourier transform is invertible. We may recover the original function
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g(t) through the inverse Fourier transform

g(t) =
1

2π

∫ ∞

−∞

dω e−iωt g̃(ω). (2.10)

Where we put the 1/
√

2π prefactor is a matter of convention, and we could have just as
easily put it on the forward transform or split it between the two.

Note that if g(t) is real, it is easy to show that

g̃(ω)∗ = g̃(−ω), (2.11)

where the “∗” indicates the complex conjugate. It’s a little more challenging to show that if
g(t) is a real, symmetric function such that g(t) = g(−t), then its Fourier transform is real
and given by

g̃(ω) = 2
∫ ∞

0
dt cos(ωt)g(t). (2.12)

The Fourier transform is useful in solving differential equations because it converts
derivatives into simple products. Considerwhat happenswhenwe take the Fourier transform
of a time-derivative:

d̃g
dt
=

∫ ∞

−∞

dt eiωt dg
dt
. (2.13)

Integration by parts gives

d̃g
dt
= eiωtg(t)

��∞
−∞
− iω

∫ ∞

−∞

dt eiωtg(t) = −iωg̃(ω), (2.14)

where we have assumed that g(t) decays to zero as |t | → ∞. (In fact the Fourier transform
itself is undefined otherwise!)

For a field such as e(x, t), which is a function of both space and time, we similarly
define a multi-dimensional Fourier transform

ẽ(k, ω) =

∫ ∞

−∞

dx
∫ ∞

−∞

dt ei(ωt−k·x)e(x, t), (2.15)

which satisfies the inverse transform relation

e(x, t) =
1
(2π)4

∫ ∞

−∞

dk
∫ ∞

−∞

dω e−i(ωt−k·x)ẽ(k, ω). (2.16)

Note that we have chosen a different sign between the ωt and k · x terms. This is purely a
convention, which we choose to agree with the solutions to the wave equation that propagate
in the +k̂ direction. In this multi-variable form, Eq. (2.14) becomes�∂e(x, t)

∂xi
= ikiẽ(k, ω) (2.17)
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for each i = 1, 2, 3, and �∂e(x, t)
∂t

= −iωẽ(k, ω). (2.18)

Note that since e(x, t) is real-valued, the Fourier transform ẽ(x, ω) must satisfy the sym-
metry relation

ẽ(−k,−ω) =

∫ ∞

−∞

dx
∫ ∞

−∞

dt e−i(ωt−k·x)e(x, t) = ẽ∗(k, ω), (2.19)

2.1.4 The General Solution to Maxwell’s Equations in Vacuum
What do these transforms have to do with solutions to the wave equation? Applying the
derivative rule twice, we find that Fourier transformation of the wave equation [Eq. (2.5)]
gives (

−
ω2

c2 + |k |
2
)
ẽ(k, ω) = 0. (2.20)

This equation is satisfied if and only if the Fourier-transformed field ẽ(k, ω) is non-zero
only for points satisfying the relation

|k | =
ω

c
. (2.21)

The relationship between the magnitude of k and ω in the wave equation is known as a
dispersion relation; in vacuum, it is a linear relation. Inverting the Fourier transform, this
implies that the most general form possible for an electromagnetic field in a vacuum is given
by Eq. (2.16), where ẽ(k, ω) is any function that satisfies Eq. (2.21).

Finally, note that although the magnetic field follows a wave equation of the same form,
the electric and magnetic fields are not independent. In fact, Fourier-transforming Eq.
(2.2c) gives

k × ẽ(k, ω) =
ω

c
b̃(k, ω) (2.22)

or, in light of Eq. (2.21),

b̃(k, ω) =
k

|k|
× ẽ(k, ω). (2.23)

Equivalently, Gauss’s law for magnetism gives

ẽ(k, ω) = −
k

|k|
× b̃(k, ω). (2.24)

Thus once the electric field is specified, the magnetic field is completely determined.
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2.1.5 Plane Waves
Although Eq. (2.16) gives a general form for electromagnetic fields in vacuum, the fields
encountered in spectroscopy are often highly idealized. In particular, instead of including
a continuous integral over possible k vectors, we will typically assume that the field can be
well approximated by a finite sum:

e(x, t) =
1

2π

∑
i

∫ ∞

0
dω Ã(i)(ω)e−iωc (ct−ŝ(i)·x) + c. c. (2.25)

In comparison to Eq. (2.16), we have simply replaced the integral over k with a discrete
sum over unit vectors ŝ(i), using the dispersion relation [Eq. (2.21)] to fix the length of the
wavevector. Note that each term has a different amplitude and phase, Ã(i). Eq. (2.25) also
incorporates a nonessential change in notation: the lower integration limit of ω has been
changed from −∞ to 0, while “+c. c.” (for “plus complex conjugate”) has been added at the
end of the expression. This is purely a notational change since the symmetry relation [Eq.
(2.19)] (and hence Ã(i)(ω) =

[
Ã(i)(−ω)

]∗) implies that the integral from −∞ to 0 is exactly
captured by the +c. c. term.

Each term in the sum [Eq. (2.25)] can be thought of as representing a different plane
wave in the laboratory, i.e., a component of the electromagnetic field that has a well-defined
propagation axis ŝ(i). It’s a fundamental feature of Maxwell’s equations that any component
of the electromagnetic field with a well-defined propagation axis has infinite spatial extent
in the plane perpendicular to the propagation axis, hence the name. Of course, this is
unphysical; any real field will have a finite spatial extent even if it has a relatively well-
defined propagation axis, as most lasers do. That is, a real field will have an intensity profile
that decays in the plane perpendicular to its principal propagation direction (typically called
a “beam”); this requires a continuous distribution of k vectors that give rise to effects that
alter the intensity profile as the field propagates. For most purposes, however, we will not
need to consider these effects explicitly, and plane waves capture most of what we care
about. Since we will deal with plane waves quite extensively, it is worth investigating their
properties in some detail.

Consider an idealized plane wave of the form

e(x, t) =
1

2π

∫ ∞

0
dω Ã(ω)e−iωc (ct−ŝ·x) + c. c. (2.26)

The complex, vector-valued function Ã(ω) in Eq. (2.26) specifies both the polarization
of the wave (the axis along which the field is directed at a given point in time and space)
and its spectrum, i.e., the amplitudes and phases of all its frequency components in Fourier
space. Note that we have not restricted a plane wave to be of a single frequency, and by
our definition a plane wave can support any polarization, amplitude, or phase.1 In fact,

1In the literature, the term plane wave is often (and incorrectly) used to mean time-harmonic (i.e. single
frequency) wave. The “plane” of course refers to the spatial extent of the wave and not the spectrum.
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in Fourier space, the plane wave of Eq. (2.26) is proportional simply to a delta function
around k = ω

c ŝ

ẽ(k, ω) = 8π3Ã(ω)δ
(
k −

ω

c
ŝ
)

(2.27)

as may be seen directly by applying the definition [Eq. (2.15)] and noting that2∫
dt eiωte−iω′t = 2πδ(ω − ω′). (2.28)

From Eq. (2.23), the magnetic field is similarly found to be

b̃(k, ω) = 8π3ŝ × Ã(ω)δ
(
k −

ω

c
ŝ
)

(2.29)

or in the time domain simply

b(x, t) = ŝ × e(x, t). (2.30)

Thus the electric and magnetic fields are perpendicular at all times. Moreover, Eq. (2.24)
implies that

e(x, t) = −ŝ × b(x, t), (2.31)

implying that the electric field is also perpendicular to ŝ. We therefore find that the three
vectors ŝ, e(x, t), and b(x, t) are mutually orthogonal at every point in time and space, with
the axes {ŝ, ê, b̂} forming a right-handed coordinate system.

A plane wave is said to be polarized if Ã(ω) can be factored as the product of a scalar
spectral function Ã(ω) and a time-independent (possibly complex) polarization vector ε̂ of
unit length:3

e(x, t) =
ε̂

2π

∫ ∞

0
dω Ã(ω)e−iωc (ct−ŝ·x) + c. c. (2.32)

Since the field is orthogonal to ŝ, the polarization vector ε̂ may always be written as a sum

ε̂ = aε̂1 + eiφbε̂2 (2.33)

where a2 + b2 = 1 and where ε̂1 and ε̂2 are real, orthogonal, unit vectors that are each
perpendicular to ŝ.

The field is said to be linearly polarized if φ = 0, i.e., if the field dynamics along the
two axes ε̂1 and ε̂1 are in phase with each other. In this case, the electric field always points
along the axis ε̂, while the magnetic field points along the perpendicular axis ŝ × ε̂.

2Apart from the usual caveats regarding the use of delta functions, this follows directly from the definition
[Eq. (2.9)] of the Fourier transform applied to the delta function and the relationship [Eq. (2.10)]

3The “length” of a complex vector is defined as ‖v‖ =
√
v∗ · v. The conjugation is necessary to ensure

that the resulting length is always a real number.
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If φ is nonzero, the field components along the two polarization axes are out of phase
with each other, and the polarization dynamics are more complicated. Such a field is said
to be eliptically polarized. As a simple example, consider a monochromatic field where

Ã(ω) =
δ(ω − ωo)

2π
(2.34)

so that

e(x, t) = aε̂1 cos
(ωo

c
(ct − ŝ · x)

)
+ bε̂2 cos

(ωo

c
(ct − ŝ · x) + φ

)
. (2.35)

For fixed x, the field polarization traces out an ellipse with a frequency ωo. When a = b,
this ellipse becomes a circle, and the field is said to be circularly polarized.

For general (not monochromatic) elliptically-polarized waves, the shapes traced out by
the electric field are more complex. At a fixed point in space, the total field traces out
a complicated pattern in time due to the fact that each frequency component completes a
single “trace” with a different frequency.

2.2 Field-Particle Interactions: Force, Work, and Energy
Implicit in Maxwell’s theory is the recognition that the electromagnetic field can transport
energy. Indeed, the Lorentz force law [Eq. (1.1)] indicates that the field does work on
charged particles, while the propagating waves we observed in the last section show that a
field generated in one region of space can propagate to others, carrying with it the potential
to do such work. In this section, we will examine this concept in more detail. Specifically,
we will develop a measure for the quantity of energy carried by a given electromagnetic
wave.

2.2.1 Electromagnetic Work
In classical mechanics, the work performed on a particle is calculated as an integral of force
exerted over distance:

W =
∫ r(t2)

r(t1)
dr · F (r). (2.36)

Here r(t1) and r(t2) are the initial and final positions of the particle of interest, and F (r) is
the force exerted on the particle at each point along its path. Since dr = v(t)dt, this can be
rewritten as

W =
∫ t2

t1
dtv · F (r(t)). (2.37)

To calculate the electromagnetic work performed on a particle, we need only evaluate
this last expression with the total force F (r(t)) replaced by the electromagnetic component
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governed by the Lorentz force law. Here, however, we are for the first time forced to choose
between the two versions of this law stated in Chapter 1, i.e., Eqs. (1.1) and (1.24). For
true point particles, Eq. (1.24) is to be regarded as the correct expression, while Eq. (1.1)
describes the total force exerted on a rigid, finite particle with very small spatial dimensions.
As it turns out, this section is one of the few points in our discussion where the distinction
really matters: as we will see shortly, several of the identities we will derive in this section
are ill-defined in the point-particle picture.

Proceeding with the (approximate) finite-particle Lorentz force law [Eq. (1.1)], the
electromagnetic component of the work done on an assembly of charged particles becomes

Wel =
∑

n

qn

∫ t2

t1
dtvn(t) · e(rn, t) (2.38)

=

∫ t2

t1
dt

∫
V

dx

(∑
n

qnvn(t)δ (x − rn)

)
· e(x, t), (2.39)

where in the second line we have used Eq. (1.22) to rewrite the expression as an integral
over some volume V that contains the material system (and no other particles). Since the
magnetic force is always perpendicular to the velocity of the particle, it can do no work.

The quantity inside parentheses in Eq. (2.39) strongly resembles the current density
j(x, t). For finite particles, it is not exactly the same, but as long as the particle dimensions
are small compared to the length scale over which the field changes appreciably, the two will
be indistinguishable from each other under the integral.4 The result is that, for sufficiently
small particles, we can write

Wel =

∫ t2

t1
dt

∫
V

dxj(x, t) · e(x, t), (2.40)

effectively treating the particles as point charges under the integral, while regarding them
as finite particles for the generation of the electric field e(x, t).

Finally, we can use Ampere’s law [Eq. (2.1d)] to eliminate the current density altogether,
obtaining an expression

Wel =
c

4π

∫ t2

t1
dt

∫
V

dxe ·
(
∇ × b −

1
c
∂e

∂t

)
(2.41)

for the electrical work solely (if rather awkwardly) in terms of field quantities.

2.2.2 The Poynting Vector and Energy Density
Fortunately, the expression can be simplified considerably. The vector identity

∇ · (e × b) = b · (∇ × e) − e · (∇ × b), (2.42)

4Strictly speaking, it is only the effective field, i.e., the electric field minus the Coulomb field of the nth

particle that must vary slowly. The Coulomb field generated by a very small particle will certainly vary
rapidly in space; but, by symmetry, this field can make no contribution to the force on the particle and is thus
immaterial to the integral [Eq. (2.40).
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allows us to rewrite the first term in parentheses as

e · ∇ × b = b · (∇ × e) − ∇ · (e × b) (2.43)

or, using the Maxwell-Faraday equation [Eq. (2.1c)],

e · ∇ × b = −
1
c
b ·

∂b

∂t
− ∇ · (e × b) . (2.44)

Noting that (for any vector a(t))

a ·
∂a

∂t
=

1
2
∂‖a‖2

∂t
, (2.45)

this gives

Wel = −

∫ t2

t1
dt

∫
V

dx
(
∇ · S +

∂u
∂t

)
(2.46)

where

S(x, t) ≡
c

4π
e × b (2.47)

is termed the Poynting vector, and

u(x, t) =
1

8π

(
‖e‖2 + ‖b‖2

)
(2.48)

is the electromagnetic energy density.
To understand this result physically, observe that if we choose the volume V to be large

enough that the field has decayed to zero at the boundaries (i.e., large enough to “contain”
both the particles and the field), then the ∇ · S term vanishes under integration by parts. In
this case

Wel = −

∫ t2

t1
dt

∫
V

dx
∂u
∂t
= − [U(t2) −U(t1)] (2.49)

where U(t) is

U(t) =
∫

V
dx u(x, t). (2.50)

Since Wel is the work performed on the material system by the field, it appears evident that
U can be interpreted as the energy contained in the electromagnetic field (so that −∆U is the
energy being transferred from field to particles), and u as the corresponding energy density.

The interpretation of S is similarly facilitated by considering a volume V that contains
no particles. In this case Wel is zero, and Eq. (2.46) becomes

0 =
∫ t2

t1
dt

∫
V

dx
(
∇ · S +

∂u
∂t

)
(2.51)
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or after differentiating with respect to t2 and letting the volume V tend to zero

∇ · S +
∂u
∂t
= 0. (2.52)

This equation has the form of a continuity law, indicating that – in the absence of interactions
with charged particles – the total energy in the electromagnetic field is conserved. The
Poynting vector may be understood as an energy current density, indicating the rate and
direction of the flow of electromagnetic energy at a given point in space.

2.2.3 Experimental Detection of the Electromagnetic Field

An important consequence of these results is that it allows us to describe concretely how
the electromagnetic field can be detected experimentally. Stationary electric or magnetic
fields can, of course, be measured directly by their observed force effects on charged or
magnetically active materials. Dynamic fields such as the propagating beams described in
the last section are somewhat more difficult to quantify since the response times of even
high-speed electronic devices are much longer than, for example, the rapid (femtosecond)
oscillation time scales of visible radiation. Instead of tracking the field directly, however,
detection of such high-frequency fields can be accomplished by measuring their stored
electromagnetic energy.

One of the oldest devices for accomplishing this task is the bolometer or thermal detector.
The operating principle of a bolometer is very simple. A small piece of strongly absorbing
material is manufactured and placed in thermal contact with a sensitive thermometer and
weak thermal contact with a heat reservoir. The optical response of the absorbing material
must be sufficiently strong that essentially all electromagnetic energy impinging on it will
be absorbed, i.e., transformed into kinetic and potential energy of the material particles. As
radiation impinges on the detector, the associated increase of energy in the material leads
to thermal heating which is detected by the thermometer. The thermal reservoir preserves
thermal stability by allowing thermal energy to leave the sensor at a known rate. In this
way, temperature change in the optical absorber provides a concrete metric for the energy
content of the impinging electromagnetic field.

Using such a device, the magnitude of the elctromagnetic field may be measured in
energetic terms – much more familiar to most of us than the charge/area units of the
electromagnetic field itself. Let us examine two common metrics for the strength of the
electromagnetic field, noting specifically their relation to the energy density uel and the
Poynting vector S just introduced.

First, suppose the electric field of interest is an ultrafast laser pulse, with a finite spatial
extent in all three directions. In spectroscopy, such pulses are typically designed to mimic
the ideal beams of Eq. (2.26), although in reality the finite spatial extent of the beam
implies that their must be a continuous distribution of propagation vectors ŝ. Since the
beam has finite dimensions in all three directions, the total energy contained in the beam
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can be calculated as

Upulse =

∫
dx u(x, t) =

1
8π

∫
dx

(
‖e(x, t)‖2 + ‖b(x, t)‖2

)
, (2.53)

where the integration volume must span the entire spatial extent of the beam. When we
refer to the “pulse energy” of an ultrafast laser, it is this quantity that we mean.

On the other hand, consider the opposite regime of a continuous-wave laser or other
source that produces a beam with a well-defined propagation axis ŝ but a stable amplitude,
rather than a series of discrete pulses. In this case, it is meaningless to speak of the
“energy” of the beam, since the field is continuously non-zero all the way from the source to
the detector. We can, however, speak of the energy flux of the beam, termed the irradiance,
i.e., the total amount of electromagnetic energy that passes through a given surface per unit
time. For a flat surface, the irradiance is directly measured by the projection of the Poynting
vector onto the surface normal. For an ideal beam of the form of Eq. (2.26), the Poynting
vector takes the form

S(x, t) ≡
c

4π
e × (ŝ × e(x, t)) =

c
4π
ŝ‖e(x, t)‖2. (2.54)

and is thus parallel to the propagation axis ŝ. The irradiance on a flat surface perpendicular
to the propagation axis is then given exactly by the magnitude of the Poynting vector,
although any real detector will actually measure the integrated quantity

Irdet =
c

4πτdetAdet

∫ to+τdet

to
dt

∫
dA ‖e(x, t)‖2, (2.55)

where τdet is a finite integration time set by the detector response and the integral dA extends
over a finite surface of area Adet perpendicular to the propagation axis ŝ.

Since the signal measured by the detector is thus determined by integrating the intensity

I(x, t) =
c

8π
‖e(x, t)‖2 (2.56)

of the beam, we often use the intensity itself as a measure of the beam power. The
word “intensity” should be used somewhat carefully, however, since in practice a variety
of different measures of beam power are often referred to simply as the “intensity.” In
particular, we will also use the word “intensity” to describe the frequency-domain quantity

I(x, ω) =
c

8π
‖ĕ(x, ω)‖2 . (2.57)

If the detector response time τdet is long relative to the oscillation frequency of the beam,
the irradiance can equivalently be written as a frequency integral over I(ω) since

Irdet =
c

16π3τdetAdet

∫
dA

∫
dω

∫
dω′ ĕ(x, ω) · ĕ(x, ω′)

∫ to+τdet

to
dte−i(ω+ω′)t

≈
c

8π2τdetAdet

∫
dA

∫
dω ĕ(x, ω) · ĕ(x,−ω) (2.58)

=
1

τdetAdet

∫
dA

∫
dω I(x, ω). (2.59)
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The frequency-domain intensity I(ω) is a particularly useful descriptor of the beam in
frequency-resolved detection schemes such as interferometers or grating monochromators
where the signal in a given frequency channel is directly proportional to I(ω).

2.3 Microscopic Electrodynamics
The results of the last section provide the complete solution to Maxwell’s equations in
vacuum. In the presence of charged particles, the behavior of the electric and magnetic
fields is much more complex and cannot in general be solved analytically. In this section
we first derive some general features of the electromagnetic field in point-particle systems
and then investigate approximate solutions in two limiting cases.

2.3.1 The Inhomogeneous Wave Equation
To begin our investigation, we first recast Maxwell’s equations into differential equation for
the individual (electric or magnetic) fields. To this end, take the curl of theMaxwell-Faraday
equation [Eq. (2.1c)] and use Ampere’s law [Eq. (2.1d)] to eliminate the magnetic field.
The result is:

∇ × (∇ × e) +
1
c2

∂

∂t

(
4πj +

∂e

∂t

)
= 0. (2.60)

Next, expand the first term using the vector identity

∇ × (∇ × e) = ∇ (∇ · e) − ∇2e (2.61)

and use Gauss’s law to replace ∇ · e with 4π% to obtain

1
c2
∂2e

∂t2 − ∇
2e = −4π∇% −

4π
c2
∂j

∂t
. (2.62)

This yields a differential equation for the electric field in terms of the charge and current
densities. A completely analogous derivation (taking the curl of Eq. (2.1d) and using Eqs.
(2.1b) and (2.1c) to simplify) gives the parallel result

1
c2
∂2b

∂t2 − ∇
2b =

4π
c
∇ × j(x, t) (2.63)

for the magnetic field.
Each vector component of Eqs. (2.62) and (2.63) has the form of the inhomogeneous

wave equation

1
c2
∂2ψ

∂t2 − ∇
2ψ = 4π f (x, t), (2.64)
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where the function f (x, t) is called the source of the field ψ(x, t). Such equations can be
solved analytically, although since the derivation is rather tedious we defer it to Section
(2.6). Here we only state the result:

ψ(x, t) =
∫

dx′
f (x′, t − |x − x′|/c)

|x − x′|
. (2.65)

Applying this solution to each component of Eqs. (2.62) and (2.63), the electric and
magnetic fields can be solved exactly in terms of the “source” charge and current densities
% and j.

Before we explore these solutions in detail, however, let’s take a moment to clarify what
they represent. It is critical to recognize that the dynamics of the source fields % and j
are themselves influenced by e and b. As a result, neither Eq. (2.62) nor its solution [Eq.
(2.66)] is sufficient to determine the field/particle dynamics: to use either one, we would
first need to know the exact dynamics of the material system! Nonetheless, we will often
be able to closely approximate a full solution by iteratively correcting the dynamics. For
example, wemight first study the particle dynamics under the influence of the “zeroth order”
electromagnetic field (i.e., the field that would exist without any particles present) and then
use the resulting material dynamics as sources for a new “first order” electric field via
Eq. (2.66). In fact, the perturbation theory framework used for virtually all spectroscopic
measurements is essentially just an iterative series of such approximations where the particle
dynamics at each iteration “feel” the electric field determined by the previous step. When
we speak of different “orders” of spectroscopy, we are generally referring to how many
iterations of this process are required before a given experiment can be captured by the
theory. Thus, although we cannot generally use Eq. (2.66) to generate exact answers, it is
extremely useful to know in advance what its solutions look like for a given set of sources.

With this caveat, we proceed to apply the general solution [Eq. (2.65)] to the wave
equations [Eq. (2.62) and (2.63)] to find that

e(x, t) = −
∫

dx′
∇′%(x′, τ)

‖x − x′‖
−

1
c2

∂

∂t

∫
dx′

j(x′, τ)

‖x − x′‖
(2.66)

and

b(x, t) =
1
c

∫
dx′
∇′ × j(x′, τ)

‖x − x′‖
(2.67)

where

τ = t −
1
c
‖x − x′‖. (2.68)

In these expressions, we use the notation ∇′ to indicate the gradient operator with respect
to x′, as opposed to the gradient ∇ with respect to x.

In the next section, we will see that these expressions can be brought into a simpler
form. Already, however, they offer considerable physical insight. Notice in particular that
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the charge and current densities are sampled not at the observation time t but at an earlier
time τ determined by the distance ‖x−x′‖ between the observation point x and the source
point x′. Physically, this means that changes to the material densities % and j can alter
the electromagnetic field only after a finite propagation time determined by the distance
from the source point and the speed of light. This recognition that electromagnetic signals
require a finite time to propagate through space was the key insight (due to Maxwell) that
gave rise to our modern understanding of electrodynamics. Prior theories of electricity and
magnetism had generally been built on the principle of “action at a distance.” Changes
to the configuration of particles at one point in space were instantaneously communicated
to particles at other locations, no matter how widely separated. The elimination of such
instantaneous processes in Maxwell’s field theory revolutionized the contemporary under-
standing of electromagnetism and set the stage for further fundamental developments such
as Einstein’s theory of relativity.

2.3.2 The Scalar and Vector Potentials
To bring these results into a more concise form, it is helpful to eliminate the gradient
operator ∇′ inside the source integrals for e and b. Let’s focus on the electric field first.
Using integration by parts, the first integral on the right hand side of Eq. (2.66) can be
written

−

∫
dx′
∇′%′(x′, τ)

‖x − x′‖
=

∫
dx′%′(x′, τ)∇′

1
‖x − x′‖

. (2.69)

(Note that ‖x − x′‖−1 decays to zero as x′ → ∞.) Now, the argument ‖x − x′‖−1 of the
gradient operators depends in exactly the same way on −x as it does on x′ and, as a result,

∇′
1

‖x − x′‖
= −∇

1
‖x − x′‖

. (2.70)

Plugging this back into Eq. (2.69) gives

−

∫
dx′
∇′%′(x′, τ)

‖x − x′‖
= −∇

∫
dx′

%′(x′, τ)

‖x − x′‖
. (2.71)

Thus we have exchanged a gradient operator inside the integral for the overall gradient of
the integral. An analogous series of operations for the source integral in Eq. (2.67) for the
magnetic field gives

1
c

∫
dx′
∇′ × j(x′, τ)

‖x − x′‖
= ∇ ×

(
1
c

∫
dx′

j(x′, τ)

‖x − x′‖

)
(2.72)

With these results, Eqs. (2.66) and (2.67) can be rewritten

e(x, t) = −∇φ(x, t) −
1
c
∂A

∂t
(2.73)

b(x, t) = ∇ ×A(x, t) (2.74)
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in terms of a scalar potential

φ(x, t) =
∫

dx′
%(x′, t − 1

c ‖x − x
′‖)

‖x − x′‖
(2.75)

and a vector potential

A(x, t) =
1
c

∫
dx′

j(x′, t − 1
c ‖x − x

′‖)

‖x − x′‖
. (2.76)

Note that Eqs. (2.75) and (2.76) involve only four independent quantities: the single
component of φ and the three vector components of A. This is a significantly more
condensed presentation of information in comparison to Eqs. (2.73) and (2.74) which
involve six independent quantities (three components for each field). Partly for this reason,
it is often more convenient in electrodynamics to work with the potentials A and φ rather
than the fields they determine.

The other key advantage to working with potentials is that they allow for considerably
more flexibility in performing calculations. Perhaps surprisingly, while A and φ uniquely
determine e and b, the converse is not true: many different potentials can give rise to the
same fields. Note, for example, that if φ and A were replaced in Eqs. (2.73) and (2.74)
with the new potentials

A′ = A + ∇ f (x, t) (2.77)

φ′ = φ −
1
c
∂ f
∂t

(2.78)

the values of the fields would be left unchanged. (Check it!) A transformation of this sort is
called a gauge transformation. A set of relations that (in addition to Maxwell’s equations)
uniquely determine A and φ is called a gauge condition. The potentials defined by Eqs.
(2.75) and (2.76) correspond to a gauge condition known as the Lorenz gauge. The Lorenz
gauge will be sufficient for our purposes in this text and (unless specifically noted), we
will always take the potentials to be defined by Eqs. (2.73) and (2.74). Readers who wish
to learn more about the general properties of the scalar and vector potentials can consult
Section 2.5. This material is, however, unnecessary for any further developments in the
text.

2.3.3 Near Field Electrodynamics: The Coulomb Potential
With these general observations in hand, let us examine the behavior of the field in close
proximity to a set of point charges whose velocities are small relative to the speed of light.
In this case, we can reasonably make the approximation τ = t − 1

c ‖x − x
′‖ ≈ t in Eqs.

(2.75) and (2.76), giving

φ(x, t) =
∫

dx′
%(x′, t)
‖x − x′‖

≡ φC(x, t) (2.79)
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and

A(x, t) =
1
c

∫
dx′

j(x′, t)
‖x − x′‖

. (2.80)

The near-field scalar potential (2.79) is known as theCoulomb potential, and it dominates
the electric field at short distances: note thatA (and hence also ∂A

∂t ) scales as 1/‖x − rn‖,
while ∇φ scales as 1/‖x − rn‖

2. Moreover, for small velocities, the magnetic force on
a charged particle (proportional to vn

c ) is usually negligible. For point particles (see Eq.
(1.20)), the electromagnetic force [Eq. (1.24)] can thus be calculated directly from the
Coulomb potential

φC(x, t) =
∑

n

qn

‖x − rn‖
(2.81)

as simply

F (EM)n ≈ qne
(eff)
n (2.82)

= qn

∑
m,n

qm
rn − rm

|rn − rm |
3 . (2.83)

This Coulomb force is the theoretical basis for molecular dynamics (MD) simulations.
Since the magnetic field plays no role in Coulombic interactions, it (along with the vector
potential) is often ignored completely in such treatments.

2.3.4 Far Field Electrodynamics: Spherical Waves
In contrast, let us now examine the behavior of the fields in the far field regime, i.e., at great
distances from any sources. In particular, suppose that the charge and current densities
are localized in a small region of space of radius R centered around the point x0, so that
%(x′, t) = 0 and j(x′, t) = 0 whenever ‖x′ − x0‖ > R. We are interested in the behavior of
the field at distances ‖x − x′‖ � R.

In this case, we can evaluate the potentials in a perturbative series in 1
r where

r = x − x0. (2.84)

Note carefully, however, that since the charge and current densities are evaluated at the
retarded time τ = t − 1

c ‖x − x
′‖, this spatial expansion in large distance also implies a

temporal expansion around the central retarded time

τr = t −
r
c

(2.85)

Indeed, defining

δr = x′ − x0, (2.86)
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the retarded time can be approximated as

τ = t −
‖r − δr‖

c
(2.87)

≈ t −
r
c
+
r · δr

rc
+ O

(
r−1

)
, (2.88)

to zeroth order in 1/r . Since the quantity ‖r − r0‖
−1 scales to lowest order as r−1, Eqs.

(2.75) and (2.76) become (to order r−1)

φ(x, t) =
∫

dδr
%(x0 + δr, t − 1

c ‖r − δr‖)

‖r − δr‖
(2.89)

≈
1
r

∫
dx′%(x′, τr) +

r

cr2 ·

∫
dx′ Û%(x′, τr) (x

′ − x0) (2.90)

and

A(x, t) ≈
1
cr

∫
dx′j(x′, τr) +

r

c2r2 ·

∫
dx′ Ûj(x′, τr) (x

′ − x0) . (2.91)

For particle velocities small relative to the speed of light, the second term in Eq. (2.91) can
be neglected thanks to its c−2 scaling. For the point-particle densities of Eqs. (1.20) and
(1.21), we thus obtain

φ(x, t) ≈
qtot
r
+
r · Ûµ(τr)

cr2 (2.92)

and

A(x, t) ≈
Ûµ(τr)

cr
(2.93)

where we have defined the total charge

qtot =
∑

n

qn (2.94)

and the dipole moment

µ(t) =
∑

n

qn (rn − x0) (2.95)

relative to x0.
It is particularly informative to examine the form of the field when the total charge

vanishes. In this case, both scalar and vector potentials are determined by the dynamics of
the dipole moment. Retaining as above only terms to lowest order in r−1 and c−1, we obtain

e(x, t) =
r · Üµ(τr)

c2r3 r −
Üµ(τr)

c2r
(2.96)

b(x, t) =
Üµ(τr) × r

c2r2 . (2.97)
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Note here that

b = −
e × r

r
. (2.98)

Conversely, the relation

e =
b × r

r
(2.99)

is easily verified using the vector identity

A × (B ×C) = B (A ·C) −C (A ·B) , (2.100)

valid for arbitrary vectorsA,B, C. Thus in the far-field region, the electric and magnetic
fields have the same magnitude (which decays as 1/r), and the field polarizations are
perpendicular to each other and to the position vector r. Physically, these equations
describe a spherical wave propagating out from the dipole at x0. The frequency of the
emitted wave or electromagnetic radiation is determined by the oscillation frequency (or
frequencies) of the source dipole.

Equations 2.96 and 2.97 highlight an important fact concerning radiation; namely, ra-
diation is generated by accelerating charges, as evidenced by the double time derivative of
the dipole moment. A more general treatment would show that any accelerating charge
produces an electromagnetic field that decays as r−1, which has as a consequence elec-
tromagnetic energy being carried out to infinity. This means that radiation carries away
kinetic and potential energy from the system, damping the motion of any accelerating
charges, including oscillating dipoles. This is of fundamental importance in spectroscopy,
where we typically call this radiation “fluorescence,” when we consider where absorbed
electromagnetic energy ends up.

2.4 Macroscopic Electrodynamics
In principle, Eqs. (2.1a) - (2.1d)], along with the Lorentz force law [Eq. (1.1)] and Newton’s
equations, provide an exact description of classical, microscopic field-particle dynamics.
In practice, however, these equations are not very useful for describing spectroscopic
experiments, which typically involve macroscopic samples, containing of the order of 1023

individual particles. Both the underlying equations and their solutions – if they could even
be obtained – would be hopelessly complex. Yet despite this apparent complexity, we
know from experience that spectroscopic measurements can often be described in terms
of only a small number of intuitive parameters. For example, if the thermodynamic state
(temperature, pressure, and volume) of a pure water sample is well-defined, we need
not worry that its absorption spectrum will differ from one moment to the next, despite
the fact that the microscopic structure is undoubtedly evolving rapidly.5 This empirical

5More accurately: if the spectrum does change, we must worry about our instrumentation (or what we’re
really trying to measure), not the sample!
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observation suggests that it should be possible to derive from the microscopic equations
a set of macroscopic electrodynamical equations that will more naturally and concisely
describe spectroscopic measurements.

Conceptually, this microscopic to macroscopic transition strongly parallels the devel-
opment of macroscopic thermodynamics from microscopic statistical mechanics. Just as
the macroscopic pressure of a confined gas can be expressed as an average over an as-
tronomically large number of particle/wall collisions, the macroscopic fields we see that
spectroscopic experiments can be described in terms of macroscopic electric and magnetic
fields, obtained by averaging the microscopic fields over a thermodynamic ensemble of
different realizations of the system. It is critical to understand that such macroscopic fields
will never be realized exactly in a spectroscopic experiment, just as it is virtually impossible
that, at any given moment, the average force due to field-particle collisions will ever be
exactly the thermodynamic pressure at all points on the surface of a gas cylinder. For
macroscopic measurements, however – whether involving a photometer or a pressure gauge
– macroscopic theories provide an essentially exact treatment.

2.4.1 Ensemble Averages

The starting point for our treatment is the distinction between physical microstates and
macrostates. The microstate of a system consists of the positions and momenta of all
material particles, along with the values of the electric and magnetic fields at all points in
space. Needless to say, in the real world, it is virtually impossible to determine precisely the
microstate of any system. Instead, we usually understand physical measurements in terms of
system macrostates, collections of microstates that all give rise to the same, specified value
of a small number of macroscopic parameters, e.g., temperature, pressure, volume, and
perhaps the average value of the electric or magnetic fields (as measured by a macroscopic
detector). In these terms, our goal is to convert the equations [Eqs. (2.1a) - (2.1d)] that
describe the dynamics of field/particle microstates into a set of parallel equations that
describe field/particle macrostates.

To this end, let us define, for any microscopic observable f , the ensemble average

〈 f 〉M =
∑
µ∈M

p(M)µ f (µ) (2.101)

over all possible microstates µ consistent with a specified macrostate M . Here p(M)µ is the
probability of observing the specific microstate µ in a system with macrostate M . For our
present purposes, it will not be necessary to specify either the nature of the macrostate M
or the method for determining the microstate probabilities p(M)µ . Although we will later
examine specific scenarios relevant to various spectroscopic measurements, the scope of
the present discussion is quite broad.

In spectroscopy, we are primarily interested in the macroscopic electric and magnetic
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fields

E(x, t) ≡ 〈e(x, t)〉M (2.102)
B(x, t) ≡ 〈b(x, t)〉M . (2.103)

In describing real spectroscopic measurements, we will refer almost exclusively to these
quantities, rather than to the microscopic fields studied so far.

Since the ensemble average [Eq. (2.101)] is linear in the microscopic fields, and since
each microscopic field satisfies Maxwell’s microscopic equations [Eq. (2.1a) - (2.1d)], it is
trivial to write down a set of formal relations

∇ ·E = 4π 〈%(x, t)〉M (2.104a)
∇ ·B = 0 (2.104b)

∇ ×E +
1
c
∂B

∂t
= 0 (2.104c)

∇ ×B −
1
c
∂E

∂t
=

4π
c
〈j(x, t)〉M (2.104d)

for the macroscopic fields in terms of the ensemble-averaged charge and current densities
〈%〉M and 〈J〉M . Unfortunately, these ensemble averaged densities are rather awkward to
work with; to make these expressions useful, we must exchange these for quantities that are
more physically intuitive and easier to calculate.

2.4.2 The Charge Density and Polarization Densities
Let’s begin with the charge density. By definition [Eqs. (1.20) and (2.101)], we have

〈%(x, t)〉M ≡
∑
µ

p(M)µ

∑
n

qnδ
(
x − r

(µ)
n

)
(2.105)

where the index n runs over all (∼ 1023) atoms in the system and where r(µ)n is the position of
the nth particle in microstate µ. This rather abstract summation can be made more concrete
by dividing it up into separate sums over (1) the number Ns of distinct chemical species in
the system, (2) the number N (s)mol of individual molecules (or chemical units) of species s,
and (3) the number N (s)p of individual number of particles composing a chemical unit of
species s:

〈%(x, t)〉M =
∑
µ

p(M)µ

Ns∑
s=1

N (s)mol∑
n=1

N (s)p∑
i=1

q(s)i δ
(
x − r

(µ)
sni

)
. (2.106)

The term “chemical species” here is intentionally broad; in molecular spectroscopy, these
will usually be molecules, although ions, atoms, or even free valence electrons would be
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equally valid.6 In Eq. (2.106), q(s)i is the charge on the ith particle in species s, while r(µ)sni
is, in microstate mu, the position of the ith atom in the nth chemical unit of species s.

At first sight, this rather complicated indexing might not appear to be progress. The
advantage is that this version can be rewritten as a simple summation over chemically
intuitive quantities. Before simplifying, however, we introduce yet one more complication.
Denote byR(µ)sn the center of mass of molecule n of species s in microstate µ. Noting that∫

dRδ
(
R −R

(µ)
sn

)
= 1 (2.107)

for any value ofR(µ)sn , the ensemble-averaged charge density can be written

〈%(x, t)〉M =
∑
µ

p(M)µ

Ns∑
s=1

N (s)mol∑
n=1

N (s)p∑
i=1

q(s)i

∫
dR δ

(
R −R

(µ)
sn

)
δ
(
x − r

(µ)
sni

)
. (2.108)

After reordering the summation and integral signs, this becomes

〈%(x, t)〉M =
Ns∑

s=1

N (s)p∑
i=1

q(s)i

∫
dR psi (R,x −R, t) , (2.109)

where

psi (R, δr, t) =
∑
µ

p(M)µ

N (s)mol∑
n=1

δ
(
R −R

(µ)
sn

)
δ
(
R + δr − r

(µ)
sni

)
(2.110)

is the joint probability density for finding a molecule of species s whose center of mass is
atR and whose ith particle is atR + δr.

The key advantage to working with psi (R, δr) is that, since it is averaged over a macro-
scopic ensemble, it is expected to be a smooth function of the center-of-mass coordinateR,
with variations occurring only over length scales much longer than a single molecule.7 It
is then appropriate to expand the probability density in a power series in its first argument.
To this end, make the change of variables δx = x −R to obtain

〈%(x, t)〉M =
Ns∑

s=1

N (s)p∑
i=1

q(s)i

∫
dδx psi (x − δx, δx, t) (2.111)

6Indeed, the grouping of a system into particular chemical species is not unique. It would never be
incorrect, for example, to consider each particle in the system as a distinct “chemical species,” although it
would not be very useful.

7This assumption will be violated under the influence of coherent electromagnetic fields with wavelengths
comparable to the molecular length scale, e.g., in coherent X-ray experiments.
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and introduce the Taylor series expansion

psi (x − δx, δx, t) ≈ psi (x, δx, t) − ∇psi (x, δx, t) · δx + .... (2.112)

Comparison with Eq. (2.111) prompts us to define the macroscopic charge density

ρ(x, t) ≡
Ns∑

s=1

N (s)p∑
i=1

q(s)i

∫
dδx psi (x, δx, t) (2.113)

=

Ns∑
s=1

∑
µ

p(M)µ

N (s)mol∑
n=1

©«
N (s)p∑
i=1

q(s)i

ª®®¬ δ
(
x −R

(µ)
sn

)
(2.114)

and the polarization density

P (x, t) =
Ns∑

s=1

N (s)p∑
i=1

q(s)i

∫
dδx psi (x, δx, t) δx (2.115)

=

Ns∑
s=1

∑
µ

p(M)µ

N (s)mol∑
n=1

N (s)p∑
i=1

q(s)i

(
r
(µ)
sni − x

)
δ
(
x −R

(µ)
sn

)
(2.116)

so that

〈%(x, t)〉M ≈ ρ(x, t) − ∇ · P (x, t) + .... (2.117)

Note that any species consisting of single particles (e.g., atomic ions or free electrons)
contribute only to the charge density ρ since the density psi(x, δx, t) must in this case be
proportional to a delta function at δx = 0. Neutral molecules, on the other hand, contribute
only to the polarization density, while charged molecules contribute to both.

Physically, the macroscopic charge density ρ(x, t) represents an ensemble-averaged
charge density if all chemical species are treated as indivisible units. In a system with only
neutral molecules or with a homogeneous distribution of positive and negative ions, ρ(x, t)
is identically zero. For real systems, the largest contribution to ρ(x, t) is typically from
unbound electrons (e.g., valence electrons in a metal) which can move freely through the
material in response to electromagnetic forces.

Recalling Eq. (2.95), on the other hand, we see that the polarization density is just the
average dipole moment for species centered at x. Physically, the fact that the polarization
enters Maxwell’s equations through the divergence ∇ · P reflects the fact that variations
in the (average) dipole moment across a sample correspond to a concentration of charge at
individual points. For example, water molecules tend to orient themselves around charged
species so that their molecular dipole moment is stabilized by the charge, e.g., with the
negatively charged water oxygen atom pointing toward cations and away from anions. The
result is a non-zero divergence for the polarization density (i.e., a change in the average
dipole orientation) in the near vicinity of the ion, reflecting the concentration of partial
charges from the polarized water molecules.
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2.4.3 The Current Density
A completely analogous calculation for the current density gives the exact result

〈j(x, t)〉M =
Ns∑

s=1

N (s)p∑
i=1

q(s)i

∫
dδxfsi (x − δx, δx, t) , (2.118)

where

fsi (R, δr, t) =
∑
µ

p(M)µ

N (s)mol∑
n=1
v
(µ)
sniδ

(
R −R

(µ)
sn

)
δ
(
R + δr − r

(µ)
sni

)
(2.119)

is the flow density for the ith particle of species s. Parallel with our previous calculation, we
could at this point carry out a Taylor series expansion for fsi. As it turns out, however, the
zeroth order term already has the same overall magnitude as the polarization density P (x).
To zeroth order, we have

〈j(x, t)〉M =
Ns∑

s=1

N (s)p∑
i=1

q(s)i

∫
dδxfsi (x, δx, t) (2.120)

=

Ns∑
s=1

∑
µ

p(M)µ

N (s)mol∑
n=1

N (s)p∑
i=1

q(s)i v
(µ)
sniδ

(
x −R

(µ)
sn

)
. (2.121)

Comparison with Eq. (2.116) suggests that this quantity is closely connected to the polar-
ization density. Indeed, the only difference is the replacement of the particle displacements
with the particle velocities. In fact, using the chain rule to evaluate the derivative of Eq.
(2.116) gives

∂P (x)

∂t
=

MP∑
s

∑
µ

p(M)µ

N (s)mol∑
n=1

N (s)p∑
i=1

q(s)i v
(µ)
sniδ

(
x −R

(µ)
sn

)
+

MP∑
s

∑
µ

p(M)µ

N (s)mol∑
n=1

N (s)p∑
i=1

q(s)i

(
r
(µ)
sni − x

) ∂

∂t
δ
(
x −R

(µ)
sn

)
, (2.122)

where the text “MP” on the first summation symbol indicates that the sum extends over only
“multi-particle” species. (Recall from the discussion following Eq. (2.116) that single-
particle species do not contribute to the polarization density.) The first term here is exactly
the contribution of multi-particle species to 〈j〉M . The second term appears somewhat
troublesome and indeed (like the delta function itself) has a well-defined mathematical
meaning only after integration over a finite volume. Because the sum is restricted to multi-
particle species, however, this term can, for most purposes, be neglected entirely. In real
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systems, “multi-particle” species always contain at least one nuclear particle; as a result,
the central coordinate R(µ)sn varies only slowly in time. Under the approximation that R(µ)sn
is in fact static, the problematic term in Eq. (2.122) disappears, and we find that the multi-
particle contribution to the ensemble-averaged current density is exactly the time derivative
of the polarization density.

For single-particle species, we define the macroscopic current density

J (x, t) =
SP∑
s

∑
µ

p(M)µ

N (s)mol∑
n=1

q(s)v(µ)sn δ
(
x −R

(µ)
sn

)
, (2.123)

i.e., just the average current density for single-particle species. Note the restriction “SP”
for “single-particle” in the sum over species. With this definition, we have

〈j(x, t)〉M = J (x, t) +
∂P (x, t)

∂t
. (2.124)

For most spectroscopic purposes, the sum over single-particle species can be further
restricted to run only over unbound electrons since the velocities of atomic ions are orders
of magnitude smaller than electronic velocities. These electronic “free charges” (some-
times, somewhat misleadingly, referred to as “true charges”) are solely responsible for the
macroscopic currents we measure, for example, with a voltmeter. In contrast, molecular
and atomic charges are often termed “bound charges” since they are incapable of rapid,
macroscopic displacement in response to electromagnetic forces.

2.5 The Scalar and Vector Potentials*
In Section 2.3.2, we encountered a representation of the electric and magnetic fields in
terms of a pair of scalar and vector potentials. In this section, we explore the significance of
these potentials in more detail, particularly their invariance under the gauge transformation
[Eqs. (2.77) and (2.78)].

Mathematically, the representation of the electromagnetic fields in terms of scalar and
vector potentials is grounded in the Helmholtz theorem. Although the basic content of the
theorem has already been briefly stated in Section 3.3.1, we briefly review and rederive it
here. Let Ẽ(k, ω) be an arbitrary (Fourier-transformed) field and consider the orthogonal
components

Ẽ‖(k, ω) = k
k · Ẽ(k, ω)

k2 (2.125)

Ẽ⊥(k, ω) = −
k ×

(
k × Ẽ(k, ω)

)
k2 . (2.126)

For each value of k, E‖ is simply the projection of E along k, while E⊥ is determined by
the components of Ẽ that are perpendicular to k. Together, these two quantities completely
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determine the field. In fact, settingA = B = k and C = Ẽ in the generic vector identity

A × (B ×C) = B (A ·C) −C (A ·B) , (2.127)

we see that

Ẽ = Ẽ‖ + Ẽ⊥. (2.128)

This equation is the essential result of the Helmholtz theorem: an arbitrary field in Fourier
space can be decomposed uniquely into a longitudinal component Ẽ‖ parallel to k and a
transverse component orthogonal to k.

In real space, the relations k · Ẽ⊥ = 0 and k× Ẽ‖ = 0 implied by Eqs. (3.69) and (3.70)
translate into (recall Eq. (2.17))

∇ ×E‖(x, t) = 0 (2.129)
∇ ·E⊥(x, t) = 0. (2.130)

Thus the Helmholtz theorem may alternatively be stated as the fact that an arbitrary field
in real space may be uniquely decomposed as the sum of a vortex-free field E‖ and a
divergence-free field E⊥.

It is useful to add to this finding a further observation regarding the general form of
divergence- or vortex-free fields. In the first case, let F (x, t) be an arbitrary vortex-free
field. In Fourier space, the vortex-free condition ∇ × F = 0 becomes simply k × F = 0,
implying that in the Helmholtz decomposition of F , only the longitudinal component F‖ is
non-zero. Now define a scalar potential

φ̃(k, ω) = −i
k · F̃ (k, ω)

k2 (2.131)

and observe that, according to the Helmholtz decomposition

F̃ = F̃‖ = −kφ̃. (2.132)

In real space this implies that

F (x, t) = −∇φ(x, t). (2.133)

Thus a vortex-free field can always be written as the gradient of a scalar potential.
On the other hand, suppose F is an arbitrary divergence-free field. In this case, only

the transverse component F⊥ is nonzero, and with

Ã = −i
k × F̃

k2 (2.134)

we have

F̃ = F̃⊥ = k × Ã. (2.135)
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In real space, this implies that an arbitrary divergence-free field can always be written as
the curl of a vector potentialA(x, t)

F (x, t) = ∇ ×A(x, t). (2.136)

So much for the mathematics. What does all this tell us about electromagnetic fields?
According to Gauss’s law for magnetism [Eq. (2.1b)], the magnetic field is always
divergence-free and hence can be written as the curl

b = ∇ ×A (2.137)

of a vector potential A(x, t). Moreover, inserting this definition into the Maxwell-Faraday
equation [Eq. (2.1c)] gives

∇ ×

(
e +

1
c
∂A

∂t

)
= 0, (2.138)

implying that the quantity e + 1
c
∂A
∂t is vortex-free and can be written as the gradient of a

scalar potential φ, so that

e = −
1
c
∂A

∂t
− ∇φ. (2.139)

Through Eqs. (2.137) and (2.139), the electric and magnetic fields are thus completely
specified by the potentialsA and φ.

Perhaps surprisingly, however, the converse is not true: the fields e and b do not uniquely
determine the potentialsA and φ. In fact, noting that ∇ × (∇ f (x, t))) = 0 for any potential
f (x, t), we see that the transformation

A→ A + ∇ f (x, t) (2.140)

leaves the magnetic field unchanged. If we simultaneously make the change

φ→ φ −
1
c
∂ f
∂t
, (2.141)

the electric field e is also unchanged. Thus the potentials A and φ can be uniquely
determined only after the introduction of additional constraints, beyond those imposed by
Maxwell’s equations. For this reason, the potentials A and φ should not be understood as
physicallymeaningful themselves; it is only the fields e and b that have physical significance.

A change in the potentials according to Eqs. (2.140) and (2.141) is known as a gauge
transformation. A set of constraints (in addition to Maxwell’s equations) that uniquely
determinesA and φ is known as a gauge. The freedom to introduce gauge transformations
is one of the great benefits of working with the potentials rather than with the fields e
and b themselves since a judiciously chosen gauge can greatly simplify the solution of the
corresponding differential equations. In the next sections we will explore two common
choices of gauge.
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2.5.1 The Coulomb Gauge
Perhaps the simplest way to uniquely specify the potentials is simply to set the longitudinal
componentA‖ to zero, i.e., to impose the condition

∇ ·A = 0. (2.142)

Such a choice is always possible. In fact, letA(x, t) and φ be any pair of vector and scalar
potentials that give rise to the correct fields. According to the Helmholtz theorem, A can
always be written as a sum

A = A⊥ − ∇φA (2.143)

of a divergence-free component A⊥ and the gradient of a scalar potential φA. If we set
f = φA in the gauge transformation equations [Eq. (2.140)] and (2.141)], we obtain a new
pair of potentials for which ∇ ·A = 0, as desired.

The chief advantage of the Coulomb gauge is that the potential φ is easy to calculate.
In fact, substituting in the definition [Eq. (2.139)] into Gauss’s law [Eq. (2.1a)] and noting
the Coulomb gauge condition [Eq. (2.142)], we obtain

∇2φ = −4πρ(x, t). (2.144)

This is the Poisson equation and yields the solution

φ(x, t) =
∫

dx′
ρ(x, t)
‖x − x′‖

. (2.145)

For stationary charges, the current densityJ vanishes, and it is easily verified thatMaxwell’s
equations are satisfied by setting A = 0 and hence b = 0. Thus Coulomb potential alone
completely specifies the electromagnetic field in the case of stationary charges.

For moving charges, however, the Coulomb potential is rather inconvenient since the
differential equation forA (obtained fromAmpere’s law, [Eq. (2.1d)]) is difficult to analyze.
In this case, it is more convenient to introduce another gauge condition known as the Lorenz
gauge.

2.5.2 The Lorenz Gauge
The Lorenz gauge condition is chosen specifically to make the differential equations for
bothA and φ easier to solve. Introducing Eqs. (2.137) and (2.139) into Ampere’s law [Eq.
(2.1d)], we obtain

∇ × (∇ ×A) +
1
c2
∂2A

∂t2 + ∇
1
c
∂φ

∂t
=

4π
c
J (x, t). (2.146)

Expanding the first term using the identity

∇ × (∇ ×A) = ∇ (∇ ·A) − ∇2A (2.147)
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gives

∇

(
∇ ·A +

1
c
∂φ

∂t

)
− ∇2A +

1
c2
∂2A

∂t2 =
4π
c
J (x, t). (2.148)

The potential φ can be removed from this equation completely by requiring that the first
term vanish, i.e., by imposing via a gauge transformation the Lorenz gauge condition

∇ ·A +
1
c
∂φ

∂t
= 0. (2.149)

(We will demonstrate shortly that there do in fact exist concrete gauge transformations from
the Coulomb gauge that induce this condition.) In this case

1
c2
∂2A

∂t2 − ∇
2A =

4π
c
J (x, t). (2.150)

This equation forA has the form of a wave equation, with the current density J acting as a
source term.

Remarkably, an equation of nearly identical form can be obtained for the scalar potential
under the Lorenz gauge. Inserting Eq. (2.139) into Gauss’s law gives

−∇ ·

(
1
c
∂A

∂t
+ ∇φ

)
= 4πρ(x, t) (2.151)

or, under the Lorenz gauge condition [Eq. (2.149)],

1
c2
∂2φ

∂t2 − ∇φ = 4πρ(x, t) (2.152)

Again, the differential equation for φ has the form of a wave equation, this time with the
charge density ρ acting as the source.

Before proceeding further, let us confirm that it really is possible to enforce the Lorenz
gauge condition [Eq. (2.149)] using a gauge transformation. Let A(C) and φ(C) be the
Coulomb-gauge scalar and vector potentials. The Lorenz gauge condition is valid if we can
find a scalar potential f such that

A = A(C) + ∇ f (2.153)

φ = φ(C) −
1
c
∂ f
∂t

(2.154)

and such that Eq. (2.149) is satisfied, i.e., such that

∇ ·

(
A(C) + ∇ f

)
+

1
c
∂

∂t

(
φ(C) −

1
c
∂ f
∂t

)
= 0. (2.155)

Recalling that ∇ ·A(C) = 0, this again takes the form of a wave equation

1
c2
∂2 f
∂t2 − ∇

2 f =
1
c
∂φ(C)

∂t
, (2.156)

with the Coulomb potential itself acting as the source.



52 Chapter 2. Electrodynamics

2.6 Solving the Wave Equation*
For readers interested in the explicit solutions, we in this section solve the generic inhomo-
geneous wave equation

�2ψ = f (x, t) (2.157)

where

�2 =
1
c2
∂2

∂t2 − ∇
2. (2.158)

The wave equation occurs repeatedly in electrodynamics and has solutions that posses
properties definitive of electromagnetic fields. In particular, we will see that the solutions
propagate at the speed of light, c.

A particular solution to the wave equation may be found via the method of Green’s
functions. With this method, one finds the so-called Green’s function solution which is
defined by

�2G(x, t,x′, t′) = δ(x − x′)δ(t − t′). (2.159)

If such a function can be found, then the particular solution to Eq. 2.157 is given by

ψ(x, t) =
∬

dx′dt′G(x, t,x′, t′) f (x′, t′). (2.160)

Physically, the Green’s function can be thought of as the field which is generated due to a
point source localized at x′ in space and at t′ in time. Then, the solution given by Eq. 2.160
can be thought of as summing the contribution of all the point sources which comprise the
physical source. To find the Green’s function, we take the Fourier transform of Eq. 2.157
in time (

−
ω2

c2 − ∇
2
)

G̃(x, ω,x′, t′) = eiωt ′δ(x − x′) (2.161a)

If we make the definitions k = ω/c and g(x, ω,x′, t′) = e−iωt ′G̃(x, ω,x′, t′), the equation
can be somewhat simplified

(∇2 + k2)g(x, ω,x′, t′) = −δ(x − x′) (2.161b)

From hereon out, we confine ourselves to problems in which there are no boundary con-
ditions other than the vanishing of fields as |x| → ∞. This ensures that g can only be a
function of |x − x′|, the distance from the point source, affording us the opportunity to
switch to a spherical coordinate system where x′ is the origin. Since g depends only on r
in this coordinate system, the angular derivatives in the Laplacian do not contribute and Eq.
2.161b reads

1
r
∂2

∂r2 (rg) + k2g = −δ(r). (2.162)
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Everywhere except for r = 0, the right hand side is zero, so that the equation may be written
as

∂2

∂r2 (rg) + k2(rg) = 0. (2.163a)

This is a second-order homogeneous ordinary differential equation for rg which has the
well know exponential solution

(rg) = Aeikr + Be−ikr, (2.163b)

such that
g = A

eikr

r
+ B

e−ikr

r
. (2.163c)

In the limit that r → 0, the delta function contributes, but the second term on the left-hand
side of Eq. 2.162 becomes negligible compared to the first. So as r → 0, we have

∇2g = −δ(r). (2.164)

To determine g, we note that formally, the Laplacian of 1/r is singular.8 That is, we may
write

∇2 1
r
= −4πδ(r). (2.165)

This implies that as g approaches zero, we have g = 1/(4πr). This is already implicit in
Eq. 2.163c provided that

A + B =
1

4π
. (2.166)

We may now retrieve the Green’s function using the definitions from above. Multiplying g

by eiωt ′ and inverse Fourier transforming gives

G(r, t, t′) =
1

2π

∫
dωe−iωt

(
A

ei(t ′+r/c)ω

r
+ B

ei(t ′−r/c)ω

r

)
, (2.167)

which can easily be integrated

G(r, t, t′) = A
δ(t′ + r/c − t)

r
+ B

δ(t′ − r/c − t)
r

. (2.168)

The two solutions given by Eq. 2.168 provide two very different physical pictures of the
response of the field to a localized source. The first term is called the retarded Green’s
function, G+, and the second, the advanced Green’s function, G−

G+(r, t, t′) =
δ(t − t′ − r/c)

r
, (2.169a)

G−(r, t, t′) =
δ(t − t′ + r/c)

r
. (2.169b)

8See appendix C.
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To see what kind of behavior of the fields these functions give rise to, we change the time
variable to τ = t − t′ which means that the source is localized in time at τ = 0 and in space
at r = 0. We first consider the retarded Green’s function, G+. At τ = 0, the instant when the
source exists, the retarded Green’s function is zero everywhere except r = 0. If τ is larger
than zero, we see that the Green’s function is zero everywhere except at the position r = cτ.
This implies that a disturbance localized at the origin spherically propagates outwards with
velocity c. If τ is smaller than zero, (that is, we are considering times before the source
existed) then the Green’s function is zero everywhere since negative values of r are not
allowed, by our definition of the coordinate system. On the other hand, the advanced
Green’s function is only non-zero before the source existed. This is a non-causal solution
to Maxwell’s equations and is clearly unphysical. We therefore reject it (B = 0) so that the
actual Green’s function for the wave equation is

G(|x − x′|, t − t′) =
δ(t − t′ − |x − x′|/c)

4π|x − x′|
. (2.170)

For an arbitrary source f (x, t), we may use Eq. 2.160 to find the solution

ψ(x, t) =
1

4π

∬
dx′dt′δ(t − t′ − |x − x′|/c)

f (x′, t′)
|x − x′|

=
1

4π

∫
dx′

f (x′, t − |x − x′|/c)
|x − x′|

.

(2.171)
Equation 2.171 is the form of the solution to either the scalar or vector potential in the
Lorentz gauge, provided that the source f is either the charge density or the current density,
respectively. The form of the Green’s function ensures that the time dependence of either
the scalar or vector field is always retarded by an amount which depends on the distance
between the source and the observation point. This is what was meant by the solutions
“propagating” at the speed of light. Since the potentials have this behavior, the fields will
as well.



Chapter 3

Spectroscopy and Material Response

3.1 Maxwell’s Equations and Material Response
Finally, inserting these results into Eqs. (2.104a) - (2.104d), we obtain a set of macroscopic
equations

∇ ·E = 4πρ(x, t) − 4π∇ · P (x, t) (3.1a)
∇ ·B = 0 (3.1b)

∇ ×E +
1
c
∂B

∂t
= 0 (3.1c)

∇ ×B −
1
c
∂E

∂t
=

4π
c
J (x, t) +

4π
c
∂P (x, t)

∂t
(3.1d)

that describe the dynamics of the macroscopic fieldsE andB in terms of the macroscopic
charge, current, and polarization densities ρ, J , and P . For these equations to be useful,
however, we must answer one additional question: How do the material densities respond
to the electromagnetic field?

Fundamentally, answering this question is the sole purpose of molecular spectroscopy1
and occupies most of the remaining material in this text. To simplify matters, however, we
will limit our scope to the study of homogeneous dielectric materials, i.e., materials for that
lack free charges and contain a uniform distribution of each chemical species. In this case,
both the macroscopic charge and current densities vanish, so that we need consider only
the coupling of the polarization density P (x, t) to the electromagnetic field. Although any
detailed calculation of the polarization will depend on the specific material being studied,
a great deal can be learned from basic physical and mathematical principles.

3.1.1 Physical Considerations
At the outset, observe that, since P is a macroscopic quantity, it must depend only on the
macroscopic fields E andB; variations due to fluctuations in the microscopic fields e and

1Although usually, of course, we also hope to learn something interesting about the material as a result!
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b must sum to zero in the ensemble average. We can thus consider P to be a functional of
the macroscopic fields E(x, t) and B(x, t). In mathematics, the word “functional” means
a mapping from one function to another. Just as a “function” maps one set of variables
(perhaps x and t) to another variable (perhaps E and B), a “functional” maps one function
(in our caseE andB) to another function (in our case P ). The dependence of a functional
on its arguments is usually represented by square brackets, i.e., the notation

P (x, t) = P [E(x′, t′),B(x′, t′)] (3.2)

indicates that the polarization fieldP (x, t) is determined by the electric and magnetic fields
E(x′, t′) and B(x′, t′). Note that the dependence of P on E and B need not be local in
either space or time: the value of P at a given location x and time t may, in principle,
depend on the values of the fields at any space-time point (x′, t′).

Relation [Eq. (3.2)] may seem hopelessly general, but physical intuition quickly guides
us to amore concrete representation. First, recall that field-particle interactions are governed
microscopically by the Lorentz force law [Eq. (1.1)], where the force due to the magnetic
field is proportional to the ratio vn

c . For most materials, the velocity of the individually
particles is much smaller than the speed of light, and, as a result, the force exerted by
the magnetic field is orders of magnitude weaker than that due to the electric field. At the
macroscopic level, this suggests that, to a first approximation, we can neglect the dependence
of P on the magnetic field entirely, so that Eq. (3.2) is replaced by

P (x, t) = P [E(x′, t′)]. (3.3)

As it turns out, this approximation works extremely well for optical and infrared spec-
troscopy, and we will adopt it uniformly throughout the following text.

Second, note (again from the Lorentz force law) that field-particle interactions are local
in space at the microscopic level. Any dependence of P (x, t) on the value of the fields
at other locations x′ in space must therefore result from the macroscopic communication
(through purely material means) of field-particle interactions across macroscopic distances.
For example, the polarization of a molecular beam by a strong laser field at one point
x′ along its path will coherently carry that polarization along with it to other points x′,
until orientational diffusion and collisions between the gas molecules eventually destroy it.
Apart from such tightly-controlled scenarios, however, collision-induced dephasing in most
materials is too strongly to allow for the coherent transport required for nonlocal spatial
response. From this point forward, we thus assume that the polarization P (x, t) depends
only on the (spatially) local field E(x, t′). Since the spatial variables x and x′ are always
understood to be the same for both P andE, they can be suppressed in our notation, so that
Eq. (3.3) becomes

P (t) = P [E(t′)]. (3.4)

In contrast, the dependence of P is, for most materials, very much nonlocal in time.
Recall, however, that physics is causal: the dynamics of a system are determined exclusively
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by its past, never by its future. We thus expect that P (x, t) is determined only by the value
of E at times t′ ≤ t, i.e.,

P (t) = P [E(t′ ≤ t)]. (3.5)

Finally, we expect the functional dependence ofP onE to be stable in time. Specifically,
1. There ought to be some short time scale δt below which variations in the field no

longer have any significant impact on the polarization and

2. There ought to be some long time scale T beyond which the system no longer
“remembers” what the field looked like at earlier times.

Suppose, for example, that we design an experiment to sample the field at a series of N = T
δt

equally-spaced time points

tn = t − T + nδt, (3.6)

so that tN = t. If we chooseT to be far enough in the past and the spacing δt between sample
points to be small enough, we expect that the discrete set of values EJ(tn) should be sufficient
to determine the polarization. (The index J here runs over the three Cartesian coordinates
x, y, z for the field polarization.) Mathematically, this means that each component PI(t) of
the polarization vector can be expressed as some function

PI(t) ≈ fI(Ex(t0), Ey(t0), Ez(t0), Ex(t1), ..., Ez(tN ); t, δt,T) (3.7)

of the 3N discrete variables EJ(tn). Here the appearance of t, δt, andT acknowledges that the
particular functional form fI will depend on the set of sample points we have chosen for the
field and (possibly) on the absolute time. Note that, since real-world measurements always
involve a finite number of samples, if this assumption were not true, it would imply that no
physical measurement on the field would ever be sufficient to determine the polarization!

3.1.2 Mathematical Formulation: Response Theory
Under these physical assumptions, it is straightforward to develop a more mathematically
useful representation for the functional dependence of the polarization on the field. Recall
that any analytic function g(x1, ..., xN ) of a set of discrete variables x1, ..., xN can be expanded
in a Taylor series

g(x1, ..., xN ) = g(0, ..., 0)

+
∂g

∂x1

����
x=0

x1 +
∂g

∂x2

����
x=0

x2 + ... +
∂g

∂xN

����
x=0

xN

+
1
2!

∂2g

∂x2
1

�����
x=0

x2
1 +

∂g

∂x1∂x2

����
v=0

x1x2 + ... +
1
2!

∂2g

∂x2
N

�����
x=0

x2
N

+
1
3!

∂3g

∂x3
1

�����
x=0

x3
1 + ... (3.8)
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around the value x = (x1, ..., xN ) = 0. Regarding the field values EJ(tn) as variables, this
suggests that, for any fixed set of time points, Eq. (3.7) can be expanded in a Taylor series
around the zero-field polarization:

PI(t) ≈ fI(0, ..., 0; t, δt,T)

+
∂ fI

∂Ex(t0)

����t,δt,T

E=0

Ex(t0) + ... +
∂ fI

∂Ez(tN )

����t,δt,T

E=0

Ez(tN )

+
1
2!

∂2 fI
∂[Ex(t0)]2

����t,δt,T

E=0

[Ex(t0)]2 +
∂2 fI

∂Ex(t0)∂Ey(t0)

����t,δt,T

E=0

Ex(t0)Ey(t0) + ...

+
1
3!

∂3 fI
∂[Ex(to)]3

����t,δt,T

E=0
[Ex(to)]3 + ..., (3.9)

where each line involves terms that scale with increasing powers of the field.
Let us focus now on the second line of Eq. (3.7), i.e., the contribution

P(1)I (t) =
∂ fI

∂Ex(t0)

����t,δt,T

E=0

Ex(t0) + ... +
∂ fI

∂Ez(tN )

����t,δt,T

E=0

Ez(tN ) (3.10)

from all terms that are overall linear in the field values EJ(tn). These terms depend on a
discrete set of 3N quantities

∂ fI
∂Ex(t0)

����t,δt,T

E=0

, ...,
∂ fI

∂Ez(tN )

����t,δt,T

E=0

(3.11)

that are, by assumption, intrinsic properties of the material system at time t, aside from
their parametric dependence on δt and T . Now, under the stability assumption of the last
section, the polarization should be independent of our particular choice of δt so long as it is
sufficiently small. For fixedT , this implies that themagnitudes of the expansion coefficients
must scale linearly with δt

∂ fI
∂Ex(t′ < t)

����t,δt,T

E=0

∝ δt, (3.12)

since the total number of such coefficients scales as 1
δt while the magnitude of the polariza-

tion is independent of δt. Further, since the response ought not to depend strongly on the
specific choice of the sample points, the values of adjacent coefficients (say ∂ fI

∂Ex(t ′)

���t,δt,T

E=0
and

∂ fI
∂Ex(t ′+δt)

���t,δt,T

E=0
) must converge in the limit that δt → 0. Finally, this implies that there must

exist a function

R(1)JI (t, t
′) = lim

δt→0

1
δt

∂ fI
∂Ex(t′)

����t,δt,T

E=0

, (3.13)
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which completely characterizes the first order polarization vector. In terms of this function,
the first-order polarization can be written

P(1)I (t) =
∑

n

δtR(1)JI (t, tn)EJ(tn). (3.14)

But this last expression is exactly the Riemann sum for the integral∫ t

t−T
dt′R(1)JI (t, t

′)EJ(t′) ≡ lim
δt→0

∑
n

δtR(1)JI (t, t − T + nδt)EJ(t − T + nδt). (3.15)

Moreover, since under our stability assumptions, the time intervalT may be made arbitrarily
large without changing the value of P(1)I , we have the exact result

P(1)I (t) =
∑

J

∫ t

−∞

dt′R(1)JI (t, t
′)EJ(t′). (3.16)

Applying exactly the same analysis to each line of Eq. (3.7), we find that the total
polarization can be written

P (t) =
∞∑

n=0
P (n)(t) (3.17)

where P (0) is the polarization of the sample in the absence of any macroscopic field, and
for n ≥ 1

P(n)α (t) =
∑

α1,...,αn

∫ t

−∞

dtn

∫ tn

−∞

dtn−1...

∫ t2

−∞

dt1Eα1(t1)Eα2(t2)...Eαn(tn)

× R(n)α1...αnα(t, tn, tn−1, ..., t1), (3.18)

where R(n)α1...αnα(t, tn, tn−1, ..., t1) is termed the nth-order response function for the polarization.

3.1.3 Tensors Transformations, Symmetry, and Invariance
Since the response functions R(n)α1...αnα(t, tn, tn−1, ..., t1) are intrinsic properties of the material
– independent of the field – theymust satisfy any symmetry properties that the material itself
possesses. This observation, sometimes know as the Von Neumann principle, is of great
utility in molecular spectroscopy, and we stop here to consider some of its most important
implications.

First, all material systems considered in this text will satisfy time translation invariance,
i.e., the properties of the system are not changed by introducing an overall shift t → t + δt
to the time axis. This at once implies that the response functions can depend only on the
time intervals t − tm, rather than on the absolute integration times tm in Eq. (3.18). For
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such systems, the response function can always be assumed to have the functional form
R(n)α1...αnα(t − tn, tn − tn−1, ..., t2 − t1). Defining τm = tm+1 − tm (with τn = t − tn), the nonlinear
polarization can be written

P(n)α (t) =
∑

α1,...,αn

∫ ∞

0
dτn...

∫ ∞

0
dτ1R(n)α1...αnα(τ1, ..., τn) (3.19)

× Eα1(t − τ1 − ... − τn)Eα2(t − τ2 − ... − τn)...Eαn(t − τn).

Defining the response tensor to be zero for negative time delays (any τm < 0), the integration
limits can be extended to negative infinity to give

P(n)α (t) =
∑

α1,...,αn

∫ ∞

−∞

dτn...

∫ ∞

−∞

dτ1R(n)α1...αnα(τ1, ..., τn) (3.20)

× Eα1(t − τ1 − ... − τn)Eα2(t − τ2 − ... − τn)...Eαn(t − τn).

This form will be assumed throughout the remainder of the text.
Second, any spatial symmetries present in the sample must also be reflected in the

response function. The reason such symmetry relations are so powerful is that they may be
combined with the general transformation laws for tensor quantities like R(n)α1...αnα. Before
exploring such symmetry relations, it is worth clarifying in more detail what exactly the
term “tensor” means here. Strictly speaking, a tensor is any quantity Tα1...αn that obeys the
transformation relation

T ′α1...αn =
∑

β1,...,βn

uα1β1 ...uαnβnTβ1...βn (3.21)

whenever the coordinate system undergoes a transformation such that the position vector x
is mapped to the transformed vector x′ with components

x′α =
∑
β

uαβxβ. (3.22)

Here u is some unitary transformation matrix that satisfies the orthonormality condition∑
α

uαβuαγ = δβγ . (3.23)

Essentially, what Eq. (3.21) says is that each component of a tensor transforms like a vector.
That R(n)α1...αnα indeed obeys this transformation law follows from the vector transfor-

mation equations for P and E. Under the coordinate transformation of Eq. (3.22), they
transform as

P′α =
∑
β

uαβPβ (3.24)

E′α = uαβEβ. (3.25)
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Now, in the transformed reference frame, Eq. (3.19) reads[
P(n)α

]′
(t) =

∑
α1,...,αn

∫ ∞

−∞

dτn...

∫ ∞

−∞

dτ1

[
R(n)α1...αnα

]′
(τ1, ..., τn) (3.26)

× E′α1(t − τ1 − ... − τn)E′α2(t − τ2 − ... − τn)...E′αn(t − τn)

or, in light of Eqs. (3.24) and (3.25),∑
β

uαβP(n)β (t) =
∑

β1,...,βn

∑
α1,...,αn

∫ ∞

−∞

dτn...

∫ ∞

−∞

dτ1 (3.27)

× uα1β1 ...uαnβn
[
R(n)α1...αnα

]′
(τ1, ..., τn)

× Eβ1(t − τ1 − ... − τn)Eβ2(t − τ2 − ... − τn)...Eβn(t − τn).

Multiplying both sides by uαβ, summing over α, and applying Eq. (3.23) gives

P(n)β (t) =
∑

β1,...,βn

∑
α1,...,αn,α

uα1β1 ...uαnβnuαβ

∫ ∞

−∞

dτn...

∫ ∞

−∞

dτ1

[
R(n)α1...αnα(τ1, ..., τn)

]′
× Eβ1(t − τ1 − ... − τn)Eβ2(t − τ2 − ... − τn)...Eβn(t − τn). (3.28)

Apart from relabeling the indices, however, this is simply the response theory equation [Eq.
(3.19)] in the original (untransformed) reference frame, implying that

R(n)β1...βnβ
(τ1, ..., τn) =

∑
α1,...,αn,α

uα1β1 ...uαnβnuαβ
[
R(n)α1...αnα

]′
(τ1, ..., τn). (3.29)

This, finally, is exactly the tensor transformation law [Eq. (3.21)], albeit for the backward
transformation x′ → x. The forward law can be obtained by repeatedly applying the
transformation matrix u to both sides of the equation and using Eq. (3.23). Thus, our
response functions really do transform as tensor quantities.

To see how the tensor transformation relation [Eq. (3.21)] can be combinedwithmaterial
symmetry properties, consider the specific example of isotropic media, i.e., materials whose
macroscopic properties are unchanged by all symmetry transformation. In such systems,
inversion of any axis via any one or more of the exchanges

x → −x (3.30)
y → −y (3.31)
z → −z (3.32)

must leave unchanged anymacroscopic systemproperties – including the response functions.
The same result holds for the exchange of any two axes via rotation and reflection of the
system

x ↔ y (3.33)
x ↔ z (3.34)
y ↔ z. (3.35)
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These properties lead to symmetry relations between the response tensor elements such as

R(1)xy = R(1)yx (3.36)

resulting from the exchange of x and y axes or

Rxy = Rx(−y) (3.37)

corresponding to inversion of the y axis. Such symmetry relations drastically simplify the
spectroscopic analysis of isotropic media.

For example, consider what happens to the response tensor element R(1)xy when the y axis
is inverted, corresponding to the unitary transformation matrix

u =


1 0 0
0 −1 0
0 0 1

 . (3.38)

The tensor transformation law [Eq. (3.21)] implies that[
R(1)xy

]′
= −R(1)xy . (3.39)

But the symmetry relation [Eq. (3.37)] requires that
[
R(1)xy

]′
be unchanged by the transfor-

mation, i.e., that [
R(1)xy

]′
= R(1)xy . (3.40)

The only possible conclusion is that

R(1)xy = 0. (3.41)

The same analysis applied to the other axis combinations gives the general first-order
relations R(1)αβ = 0, for all α , β. This means that an electric field polarized along
a particular axis cannot induce a polarization along a different axis in isotropic media.
Moreover, symmetry under the exchanges [Eq. (3.33) - (3.35)] implies that Rαα = Rββ for
all α and β. Thus the first order response tensor for a isotropic system is specified by a
single scalar function

R(1) = R(1)xx = R(1)yy = R(1)zz . (3.42)

Symmetry arguments for higher-order response tensor elements follow much the same
process, but we will defer any detailed discussion until we consider specific experimental
scenarios. One result of strikingly broad applicability, however, is worth noting here: since
any even-order response tensor element possesses an odd number of tensor indices, it must
always undergo a sign change under the inversion transformation (x, y, z) → (−x,−y,−z).
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But since Von Neumann’s principle implies that the tensor element cannot change under
inversion, we see that all even-order response tensor elements vanish for isotropic media.

In non-isotropic media, such as crystalline solids or liquids with long-range order,
the situation can be considerably more complex, especially when considering nonlinear
response. In this case, we must consider the specific symmetries of the material and derive
relations among the different components of the response tensor. For crystalline solids the
non-zero elements of the response tensor are determined by which of 230 three-dimensional
space groups they belong to.

3.2 Linear Response
Evenwith the help of our response theory expressions for the polarization, solvingMaxwell’s
equations in matter is often quite a difficult task. Fortunately, it turns out that the optical
response of most materials is dominated by the linear response tensorR(1)(τ). In this case,
solutions to Maxwell’s equations are remarkably simple and physically intuitive.

3.2.1 Solving Maxwell’s Equations

Linear spectroscopy in dielectric materials is governed by the four equations [Eqs. (3.1a) -
(3.1d)], along with the linear response relation

P(1)α (t) =
∑
β

∫ ∞

−∞

dτR(1)αβ(τ)Eβ(t − τ), (3.43)

the particular case of Eq. (3.20) for n = 1. In this section we will restrict our attention
to the case of isotropic dielectrics, so that the response tensor R(1) is diagonal and com-
pletely specified by a scalar quantity R(1)(τ). (Note also that, by symmetry, the zero-field
polarization P (0) must vanish for such materials.) In this case, Eq. (3.43) can be written

P (1)(t) =
∫ ∞

−∞

dτR(1)(τ)E(t − τ), (3.44)

implying at once that the polarization in the sample is parallel to the polarization of the
electric field.

Solving Maxwell’s equations with this complicated function plugged into them may not
look like an easy task. But the solution becomes much clearer if we transform to the Fourier
domain in the time coordinate. Let us introduce the partially-transformed field

Ĕ(x, ω) ≡

∫ ∞

−∞

dteiωtE(x, t), (3.45)
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along with the corresponding polarization density P̆ (x, ω). Note then what happens when
we perform a partial Fourier-transformover Eq. (3.44) and exchange the order of integration:

P̆ (1)(ω) =

∫
dteiωtP (1)(t) =

∫
dteiωt

∫
dτR(1)(τ)E(t − τ) (3.46)

=

∫
dτR(1)(τ)

∫
dteiωtE(t − τ). (3.47)

Making the change of variables t′ = t − τ produces

P̆ (1)(ω) = Ĕ(ω)

∫
dτR(1)(τ)eiωτ (3.48)

≡ χ(ω)Ĕ(ω), (3.49)

where χ (defined in the last line) is simply the Fourier transform of the linear response
function and is typically referred to as the linear susceptibility. Thus in the Fourier domain,
the linear polarization density is directly proportional to the electric field.

This observation suggests that we perform the same partial Fourier transformation on
Maxwell’s equations [Eqs. (3.1a) - (3.1d)]. Together with Eq. (3.48), this produces a set of
homogeneous different equations

(1 + 4πχ) ∇ · Ĕ = 0 (3.50a)
∇ · B̆ = 0 (3.50b)

∇ × Ĕ −
iω
c
B̆ = 0 (3.50c)

∇ × B̆ +
iω
c
(1 + 4πχ) Ĕ = 0 (3.50d)

that resemble quite strongly the vacuum equations [Eq. (2.2a) - (2.2d)]. In fact, the only
distinction is the addition of the scaling factor 1 + 4πχ in Eqs. (3.50a) and (3.50d)]. Since
χ(ω) always occurs in this combination in linear optics, one often works instead with the
electric permittivity

ε(ω) = 1 + 4πχ(ω) (3.51)

to simplify the form of the equations.
Following essentially the same procedure we used to solve the vacuum-field equations,

we take the curl of Eq. (3.50c), use the identity [Eq. (2.61)] to simplify the double cross
product, and use Eq. (3.50d) to eliminate the magnetic field and Eq. (3.50a) to eliminate
the divergence of the field. The result is a homogeneous equation

∇2Ĕ +
ω2

c2 εĔ = 0 (3.52)
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that produces solutions of the form

Ĕ(x, ω) = Ã(ω)eiωc
√
εŝ·x (3.53)

where ŝ is any real unit vector. In the time domain, this solution resembles a propagating
wave

E(x, t) =
∫

dωÃ(ω)e−iωc (ct−
√
εŝ·x) (3.54)

but with an amplitude and phase that change with x due to the permittivity
√
ε. The

complete solution for a given situation will consist of a linear combination of such solutions
with different ŝ vectors, depending on the boundary conditions of the problem.

3.2.2 Absorption Spectroscopy
As a concrete example, consider an ideal beam of the form [Eq. (2.26)] propagating along
the z axis (ŝ = ẑ that at z = 0 encounters a semi-infinite sample lying in the xy plane with a
finite length ` along the z axis but infinite dimensions in x and y. The boundary conditions
of the problem require that the field in the sample have the same value as the vacuum fields
at z = 0 and z = `, leading to a solution of the form

Ĕ(x, ω) = Ã(ω) ·


eiωc z, z < 0

eiωc
√
ε(ω)z, 0 ≤ z ≤ `

eiωc
(√

ε(ω)`+z
)
, z > `

(3.55)

Relative to the vacuum field, the sample thus imparts both a phase (depending on the real
part of

√
ε(ω)) and a decrease in amplitude (depending on the imaginary part).

Experimentally, the attenuation of beam intensity with distance is monitored in ab-
sorption spectroscopy. The frequency-resolved intensity I(ω) of a beam is measured after
passage through the sample of interest and is compared to the intensity Io(ω) measured in
the absence of the sample. The ratio

T(ω) =
I(ω)
Io(ω)

(3.56)

is called the transmittance and, for the scenario of Eq. (3.55) takes the form

T(ω) =

Ã(ω)
2 e− 2ω

c Im
√
ε(ω)`Ã(ω)

2 = e−
2ω
c Im
√
ε(ω)` (3.57)

For convenience the exponential is often eliminated by reporting instead a logarithmic
quantity, the absorbance

A(ω) = −logT(ω) =
2ω`

c ln 10
Im

√
ε(ω). (3.58)
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Since it is the imaginary part of
√
ε that is measured in such experiments, it is often

given its own symbol as the extinction coefficient

κ(ω) ≡ Im
√
ε(ω). (3.59)

The corresponding quantity

n(ω) ≡ Re
√
ε(ω) (3.60)

is termed the index of refraction and determines the phase shift acquired by each frequency
component of a beam as it propagates through a linear medium. For many systems of exper-
imental interest, where Imχ(ω) � 1, the two quantities may be expressed approximately
as

n(ω) ≈
√

1 + 4πReχ (3.61)

κ(ω) ≈
2πImχ

n(ω)
. (3.62)

In this case, the absorbance can be expressed simply as a function of the linear susceptibility
via

A(ω) =
4πω`

cn(ω) ln 10
Imχ(ω). (3.63)

What’s really going on?
The equations of electrodynamics have an uncanny knack for masking the physics

that underlies what’s really going on. On the one hand, this is fortunate –we needn’t
worry about too much to calculate things like absorption coefficients. On the other
hand, we tend to forget about what’s actually happening when light and matter interact.

Contained implicitly with an equation as simple as (3.63) is the fact that as the light
passes through the material, it accelerates the electrons bound to the molecules that
make up said material. These electrons are displaced from their equilibrium positions,
generating a dipole moment, so they too begin to oscillate at the frequency of the
driving light. The oscillating dipoles radiate their own waves, which in interferes with
the drive and eventually ends up on our detector.

You may be wondering how we can measure absorption if each dipole is radiating.
Shouldn’t we see some constant radiation pattern? It turns out that the whole story is
contained in the phase of the radiatedwaves. If we had treated this from themicroscopic
perspective of a driven dipole, we would see that the waves radiated in the propagation
direction of the driving field are perfectly out of phase with the driving field itself.
Therefore, the intensity we measure in the forward direction is smaller –this is what we
call absorption.

Where does the energy go? Well a dipole doesn’t only radiate in the direction of
the driving field, so energy from the mode of the driving field is distributed into other
modes of the field. In other words, we measure light intensity in other directions –this
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is what we call fluorescence. Of course, fluorescence doesn’t always occur. In our
example above, it doesn’t occur due to the artificial infinite slab we considered. In
real systems, it may not occur of the energy put into the system is rapidly converted to
low-frequency molecular motions, or heat.

3.3 Nonlinear Response and N-Wave Mixing
The linear response assumption turns out to be remarkably accurate for most materials under
moderate field intensities. As the field intensity increases, however, any real material will
eventually show signs of nonlinear response, polarization effects that are proportional to
higher orders in the field.2 In contrast to the linear response regime, it is difficult to obtain
exact solutions to Maxwell’s equations under almost any circumstances involving nonlinear
response.

We can, however, obtain approximate solutions that adequately describe most experi-
mental measurements. To begin, let us separate the linear and nonlinear contributions to
the polarization via the definition

P (NL)(x, t) = P (x, t) − P (1)(x, t), (3.64)

where P (1) is defined by Eq. (3.20). Since we can solve Maxwell’s equations exactly for
the linear polarization (alone), this will serve as a convenient starting point for approximate
treatments. Maxwell’s equations (for homogeneous dielectric materials) can now be written

∇ ·

(
E + 4πP (1)

)
= −4πP (NL) (3.65a)

∇ ·B = 0 (3.65b)

∇ ×E +
1
c
∂B

∂t
= 0 (3.65c)

∇ ×B −
1
c
∂

∂t

(
E + 4πP (1)

)
=

4π
c
∂P (NL)

∂t
. (3.65d)

Following now our usual prescription (take the curl of Eq. (3.65c), use identity [Eq. (2.61)]
to simplify the double cross-product and Eq. (3.65d) to eliminate the magnetic field), we
obtain an equation

∇ (∇ ·E) − ∇2E +
1
c2

∂2

∂t2

(
E + 4πP (1)

)
= −

4π
c2

∂2

∂t2P
(NL) (3.66)

for the electric field alone in terms of the total polarization.

2To get a sense of scale, the most intense sunlight on a hot summer afternoon falls about 8 orders of
magnitude short in field strength of eliciting a nonlinear response in most media.
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3.3.1 The Longitudinal and Transverse Fields
This equation resembles the wave equations we have studied already, but is complicated by
the apperance of the ∇ · E term which, for nonlinear media, is not necessarily zero. Its
behavior is much easier to analyze in Fourier space, taking the form

−k
(
k · Ẽ

)
+ k2Ẽ −

ω2

c2

(
Ẽ + 4πP̃ (1)

)
=

4πω2

c2 P̃ (NL). (3.67)

Observe now, that in k-space, the total field Ẽ can be expressed as the sum

Ẽ = Ẽ‖ + Ẽ⊥ (3.68)

of two orthogonal components

Ẽ‖(k, ω) = k
k · Ẽ(k, ω)

k2 (3.69)

Ẽ⊥(k, ω) = −
k ×

(
k × Ẽ(k, ω)

)
k2 (3.70)

termed the longitudinal field (Ẽ‖) and the transverse field (Ẽ⊥). (Note that Eq. (3.68)
follows immediately from the definitions [Eqs. (3.69) and (3.70)] using equality [Eq.
(2.100)].) At each point k in Fourier-space, the longitudinal field corresponds simply to the
projection along k, while Ẽ⊥ is the orthogonal complement. Inserting Eq. (3.68) into Eq.
(3.67) and defining analogous transverse and longitudinal components for the polarization
terms, we obtain two separate equations

−Ẽ‖ + 4πP̃ (1)
‖
= −4πP̃ (NL)

‖
(3.71)(

k2 −
ω2

c2

)
Ẽ⊥ +

ω2

c2 4πP̃ (1)⊥ =
4πω2

c2 P̃ (NL)⊥ (3.72)

characterizing the longitudinal and transverse fields.
Our results so far are exact, and one might almost suspect that we can solve these

equations directly. The longitudinal equation is particularly straightforward since all factors
of k and ω have disappeared from the final expression, meaning that the equation is
algebraic in both Fourier space and real space: the longitudinal nonlinear polarization is
simply proportional to the electric field plus the linear polarization. The transverse equation
is more complicated but strongly resembles the wave equations we’ve already encountered.

There is, however, a fundamental difficulty that prevents us from proceeding with exact
results: The polarization terms (both linear and nonlinear) in each equation depend on the
total electric field so that (1) the longitudinal and transverse equations may be coupled via
any dependence of P̃⊥ on E‖ or vice versa, and (2) the transverse equation differs from a
true wave equation in that the source term is itself dependent on the field. In the next section,
we introduce an approximation that, for the particular case of isotropic media, eliminates
both difficulties.
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3.3.2 The Rare Medium Approximation in Isotropic Media

Although all real materials exhibit nonlinear response at sufficiently high field intensities,
the optical response of many systems is sufficiently weak that the total electric field in the
sample differs only slightly from the “applied field” – i.e., the electric field that would be
present (under the given experimental boundary conditions) in the absence of the sample.
The rare medium approximation takes advantage of this fact to simplify Eqs. (3.71) and
(3.72). For the particular case of isotropic media, this simplification completely decouples
the two field components.

To this end, let us decompose the total field in the sample as

E = Eext +E
(1) +E(NL), (3.73)

whereEext is the external field (the field that would solveMaxwell’s equations in the absence
of the sample),E(1) is the correction necessary so that the combined fieldEext+E

(1) solves
Maxwell’s equations under the linear response approximation for the material, andE(NL) is
whatever correction remains necessary so that Eext +E

(1) +E(NL) solves the complete set
of nonlinear Maxwell’s equations.

For optically rare materials (i.e., those with weak overall optical response), the cor-
rections E(1) and particularly E(NL) are weak, by definition. This suggests that we can
obtain accurate approximations to the true nonlinear response by allowing both P (NL) to be
determined solely by the linear fieldEext +E

(1), rather than by the total field. In functional
notation, this means

P (NL)[E] ≈ P (NL)
[
Eext +E

(1)
]
, (3.74)

where the functional form of P (NL)[E] is determined by the nonlinear response expansion
of Eqs. (3.17) and (3.20).

For isotropic materials, this approximation is, in some sense, the definitive solu-
tion to our difficulties. The linear field Eext + E

(1) and the linear polarization P (1) =
4πχ(1)(ω)

(
Eext +E

(1)
)
are, in this case, simply the solutions to Maxwell’s equations stud-

ied in Section (3.2), which is entirely transverse (i.e., the longitudinal component vanishes).
Equation (3.71) then becomes simply

Ẽ(NL)
‖
= −4πP̃ (NL)

‖

[
Ẽext + Ẽ

(1)
]
. (3.75)

This longitudinal field is purely local: due to the absence of derivatives in either time or
space, the longitudinal field vanishes outside the sample (i.e. the longitudinal polarization
does not radiate) and is thus of little interest experimentally. Moreover, under the rare
medium approximations P̃⊥ is independent of Ẽ‖ , so that in practice the longitudinal field
can, for most purposes, be neglected entirely.
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The transverse field exhibits much more interesting behavior. Under the rare medium
approximation in isotropic media, Eq. (3.72) becomes3(

k2 −
ω2

c2 ε(ω)

) (
Ẽext + Ẽ

(1)
)
+

(
k2 −

ω2

c2 ε(ω)

)
Ẽ(NL)⊥

=
4πω2

c2 P̃ (NL)⊥

[
Ẽext + Ẽ

(1)
]
. (3.76)

But by definition of Ẽ(1), the first term here is identically zero, so that(
k2 −

ω2

c2 ε(ω)

)
Ẽ(NL)⊥ =

4πω2

c2 P̃ (NL)⊥

[
Ẽext + Ẽ

(1)
]
. (3.77)

Critically – and in contrast to Eq. (3.75) for the longitudinal field – this equation is capable
of supporting nonlinear components of the electric field outside the sample. In fact, outside
the sample the right hand side vanishes and ε(ω) = 1, so that the equation reduces simply
to the homogeneous wave equation. Physically, this means that nonlinear transverse fields
generated inside the sample can radiate out of the sample, propagating outward as the
electromagnetic waves studied in Section 2.1.

3.3.3 N-Wave Mixing
In Fourier space, Eq. (3.77) is solved trivially as

Ẽ(NL) = 4π
P̃ (NL)

[
Ẽext + Ẽ

(1)]
c2k2

ω2 − ε(ω)
(3.78)

in terms of the nonlinear polarization density. Note that here, and throughout the text,
we drop the subscript ⊥ for the transverse field since the longitudinal field is not usually
experimentally measurable and (for optically rare, isotropic media) does not mix with the
transverse field.

Despite this simple Fourier representation, transforming back to real space is rather
involved, so we will defer any discussion of explicit real-space solutions until we need them
to describe specific experiments. Without difficulty, however, a great deal of physical insight
can be obtained from Eq. (3.78) by examining the conditions under which the nonlinear
field can be nonzero. First, however, we must provide an explicit form for P̃ (NL) in Fourier
space. Appling the definition [Eq. (2.15)] of the Fourier transform to Eq. (3.20) gives
directly

P̃(n)α
[
Ẽ(exc)

]
=

∑
α1,...,αn

∫
dτn...

∫
dτ1R(n)α1...αnα(τ1, ..., τn) (3.79)

×

∫
V

dx
∫

dt ei(ωt−k·x)E (exc)α1 (x, t − τ1 − ... − τn)...E
(exc)
αn (x, t − τn),

3Note that we have dropped the subscripts ⊥ on Ẽext and Ẽ(1) since both are completely transverse in
isotropic media.
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where

Ẽ(exc) = Ẽ(ext) + Ẽ
(1) (3.80)

is the “excitation” field that (under the rare medium approximation) induces the nonlinear
polarization, and where the integration over x is limited to the sample volume V since the
polarization vanishes outside of the sample.

Casting the excitation fields in terms of their transforms

E (exc)αi (x, t − τi − ... − τn) =
1
(2π)4

∫
dωi

∫
dki Ẽ

(exc)
αi (ki, ωi) (3.81)

× e−iωi(t−τi−...−τn)eiki ·x,

reordering the integrals, and combining exponents, this becomes

P̃(n)α (k, ω) =
1
(2π)4n

∑
α1,...,αn

∫
dω1...

∫
dωn

∫
dk1...

∫
dkn (3.82)

× Ẽ (exc)α1 (k1, ω1)...Ẽ
(exc)
αn (kn, ωn)

×

∫
dτn...

∫
dτ1 R(n)α1...αnα(τ1, ..., τn)eiω1τ1 ei(ω1+ω2)τ2 ...ei(ω1+...+ωn)τn

×

∫
V

dx
∫

dt ei(k1+...+kn−k)·xe−i(ω1+...+ωn−ω)t .

The second-to-last line here is exactly the Fourier transform of the response function,
evaluated at the successive frequencies ω1, ω1 +ω2, etc. The final integral dt is exactly the
Dirac delta function 2πδ(ω1 + ... + ωn − ω). The integral dx is almost a delta function in
k but differs due to the finite volume V of the sample. Although such finite-size effects can
be important for very small samples (e.g., the nonlinear properties of a single nanoparticle),
for macroscopic samples and optical wavelengths, it is usually an excellent approximation
to extend the integration limits to cover all space. In this case, we obtain

P̃(n)α (k, ω) ≈
1

(2π)4(n−1)

∑
α1,...,αn

∫
dω1...

∫
dωn

∫
dk1...

∫
dkn (3.83)

× δ (ω1 + ... + ωn − ω) δ (k1 + ... + kn − k)

× R̃(n)α1...αnα(ω1, ..., ω1 + ... + ωn)

× Ẽ (exc)α1 (k1, ω1)...Ẽ
(exc)
αn (kn, ωn).

Because the nth-order polarization density is determined by a product of excitation fields
sampled at n different points in Fourier space, and because this induced polarization gives
rise, under Eq. (3.78) to propagating waves with a new wavevector k and frequency ω,
experiments thatmeasure the nth-order field are often term (n+1)-wavemixing experiments.4

4The “n” refers to the excitation waves corresponding to Fourier points (ki, ωi), while the “+1” refers to
the generated signal.
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3.3.4 Signal Frequencies and Wavevectors
From this expression, we can concretely analyze the conditions necessary to observe non-
linear signals. The most apparent restriction is that the pair of delta functions in ω and k
enforce two strict “sum conditions” for the emitted signal:

ω = ω1 + ... + ωn (3.84)
k = k1 + ... + kn, (3.85)

where ωi and ki are the frequencies and wavevectors at which the field components Ẽαi
are sampled. If the excitation fields Ẽαi are strongly peaked in k and/or ω, the signal
frequencies ω and k are strongly constrained by Eqs. (3.84) and (3.85). Note, however,
that the frequencies ωi and wavevectors ki may have either positive or negative signs: due
to the symmetry constraint [Eq. (2.19)] on the electric field, any field Ẽ(k, ω) with a strong
peak near (ki, ωi) must also exhibit a strong peak near (−ki,−ωi).

3.3.5 Phase Matching
Although perhaps less obvious, the restrictions [Eqs. (3.84) and (3.85)] imply an additional
restriction on nonlinear signals. Inserting Eq. (3.83) into Eq. (3.78), bringing the prefactor(

c2k2

ω2 − ε(ω)
)−1

inside the integral, and using the summation conditions [Eqs. (3.84) and
(3.85)], we obtain

Ẽ(NL)(k, ω) =
4π

(2π)4(n−1)

∑
α1,...,αn

∫
dω1...

∫
dωn

∫
dk1...

∫
dkn (3.86)

× δ (ω1 + ... + ωn − ω) δ (k1 + ... + kn − k)

× R̃(n)α1...αnα(ω1, ..., ω1 + ... + ωn)

×
Ẽ (exc)α1 (k1, ω1)...Ẽ

(exc)
αn (kn, ωn)

c2‖k1+...+kn‖
2

(ω1+...ωn)
2 − ε(ω1 + ...ωn)

.

When the denominator in this expression nears zero, the nonlinear field will be strongly
enhanced, leading to the phase-matching condition5

c2‖k1 + ... + kn‖
2

(ω1 + ...ωn)
2 ≈ ε(ω1 + ...ωn). (3.87)

Although the magnitude of the polarization itself is unaffected by this condition, induced
polarizations that do not satisfy Eq. (3.87) will generally not radiate.

5Note that phase-matching can never be exactly satisfied since the left-hand side of Eq. (3.87) is strictly
real, while for real materials the right-hand side always possesses a non-zero imaginary part, representing
absorption of the field. This ensures that the field, under Eq. (3.78), is always finite.
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In the particular case that the excitation field has a well-defined propagation axis ŝo, the
phase-matching condition can be stated more concretely in terms of the refractive index. As
the linear solution to Maxwell’s equations, the excitation field Ẽ(exc) satisfies approximately
the dispersion relation

‖k‖ ≈ n(ω)
ω

c
. (3.88)

If the propagation axis is well-defined, we must then have

ki = n(ωi)
ωi

c
ŝo (3.89)

for each 1 ≤ i ≤ n. The phase-matching condition [Eq. (3.87)] then becomes

n(ω1)ω1 + ... + n(ωn)ωn ≈ n(ω1 + ...ωn)(ω1 + ...ωn). (3.90)

If the index of refraction n(ω) is independent of frequency over the interval of interest,
this condition is automatically satisfied. This will often be the case when the signs of the
individual frequencies ωi alternate, e.g., ω1 ≈ −ω2 ≈ ω3, .... For example, the four-wave
mixing experiment known as pump-probe spectroscopy is automatically phase-matched. If
the individual frequenciesωi all have the same sign, however, phase-matching will generally
not be satisfied, leading to a strong suppression of nonlinear signals. For example, third-
harmonic generation is a third-order experiment for which ω1 ≈ ω2 ≈ ω3, so that the
signal frequency is roughly three times the frequency of the excitation field. Since for
most systems n(ω) , n(3ω), such processes are strongly suppressed in isotropic media,
and third-harmonic generation is usually restricted to anisotripic materials where phase-
matching can be accomplished by taking advantage of the fact that different crystal axes
may exhibit different refractive indices.

What’s in a phase?
It is often stated that phase matching (or equivalently, wavevector matching as in

Eq. (3.85)) is a consequence of conservation of momentum. This is a incorrect. All
light matter interactions conserve momentum; phase matching is special.

The physics that underlies phase matching is implied in the name –some phases
need to be matched to each other to produce nonlinear signal. To see which phases,
consider that the nonlinear polarization is a running wave with frequency ω1 +ω2 + . . .
and wavevector k1 + k2 + . . . (see Eq. (3.20)) which are determined by the excitation
field. This means that each point in the sample is radiating some contribution toE(NL),
but with an amplitude and phase determined by the excitation field. If each point of
radiation doesn’t add coherently with every other, destructive interference occurs and
E(NL) outside the sample is tiny.

In other words, E(NL) is a running wave in its own right, and it needs to run at the
same rate as P (NL) in order for a macroscopic electric field to be generated. If E(NL)

and P (NL) are at the same frequency, this is trivial. If they are different (as in third
harmonic generation) then the only way to ensure thatE(NL) and P (NL) run at the same
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rate is if Eq. (3.90) is satisfied.
This is evident in cases where all wavevectors are not parallel as well. Consider

a sum frequency generation experiment where the two driving lasers impinge on the
system at 90◦ relative to each other. The resulting polarization runs along the line that
bisects the angle between the two wavevectors, and indeed,E(NL) is radiated along this
line.

This may all seem like splitting hairs –after all, phase matching does conserve
momentum. The important point here is that there are also incoherent nonlinear
processes, which do not generate a macroscopic E(NL), that still occur, though these
processes generate signals bearing no phase relation to the excitation field (such as
two-photon absorption followed by fluorescence).

3.3.6 Response Function Resonances
Finally, and perhaps of most interest to the spectroscopist, the nonlinear signal depends
strongly on resonance between the excitation field and the nonlinear response tensor R(n).
The response tensors for most materials are strongly frequency-dependent, exhibiting strong
peaks, as we shall see later, at frequencies resonant with the underlying microscopic dy-
namics of the material. It is exactly this sensitivity of the nonlinear response to microscopic
dynamics that gives nonlinear spectroscopy its power as a probe of material systems. The
next two chapters examine this relationship in detail, examining the optical properties of a
variety of microscopic models for material systems.

3.3.7 The Signal Field
• Neglect Im ε(ω)

• Take Re ε(ω) ≡ n2(ω) constant

(
k2 −

n2ω2

c2

)
Ẽ(NL) (k, ω) =

4πω2

c2 P̃ (NL) (k, ω) (3.91)

Taking the Fourier transform gives(
n2

c2
∂2

∂t2 − ∇
2
)
E(NL) (x, t) = −

4π
c2

∂2

∂t2 P̃
(NL) (x, t) (3.92)

E(NL)(x, t) = −
4π
c2

∫
dx′

∂2

∂t2 P̃
(NL) (x′, t − |x − x′|n/c)

|x − x′|
(3.93)

Assume P (NL)(t) ∝ eiω(t+ n
c z) + c.c.
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In far-field limit, |x − x′| ≈ z, so that

E(NL)(x, t) = −
4π
c2

∫
dx′

∂2

∂t2 P̃
(NL) (z, t − zn/c)

z
(3.94)

∝ −
4π
c2

∫
dx′

∂2

∂t2 eiωt

z
(3.95)

≈
4π
ω2c2

∫
dx′

∂2

∂t2 eiωt

z
(3.96)
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Chapter 4

Quantum Dynamics

4.1 The Postulates of Quantum Mechanics

4.1.1 Introduction
The description of propagating electromagnetic fields developed in the preceding chapters
relies on a wholly classical explanation of physics. In contrast, our description of material
dynamics will be purely (or almost purely) quantum mechanical. Although we will make
no effort here to give a complete description of quantum theory, a cursory introduction is
in order.

Perhaps the most fundamental distinction between quantum and classical mechanics
is in our philosophical understanding of uncertainty in physical observables. In classical
mechanics, the complete physical description of a system is specified by the time-dependent
positions x of each particle in the system. If we know x(t) exactly as a function of time, we
are able to calculate with arbitrary precision the value of any other mechanical observable
(velocity, momentum, energy, etc.) in terms of that trajectory or its derivatives with respect
to time. Uncertainty in x(t) may give rise to uncertainty in the derived quantities, but this
uncertainty reflects our ignorance of the true value of x(t), not any fundamental ambiguity
in the value of the observable.

In quantum theory, in contrast, the complete state of a system is determined not by
a coordinate trajectory x(t) but by a wavefunction trajectory ψ(α, t). The wavefunction
is a purely quantum mechanical creature, depending on time and on some other physical
observableα (position, momentum, energy, etc.) forwhich it acts as a probability amplitude,
i.e. |ψ(α, t)|2 gives the probability density for observing the value α in a measurement of
the corresponding physical observable at time t. That the wavefunction specifies only a
probability amplitude–not the exact value of each physical quantity–reflects a fundamentally
different understanding ofmeasurement uncertainty in quantummechanics as opposed to the
classical theory. Whereas classical uncertainty arises from our own ignorance of the system
under consideration, quantum uncertainty exists even when our knowledge of the physical
state of the system is complete and perfectly precise. Indeed, although a sufficiently sharply-
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peaked wavefunction might produce very low uncertainty in the value of α, the postulates of
quantum mechanics further demonstrate that wavefunctions with low uncertainty in certain
parameters give correspondingly high uncertainty in other parameters; the inverse relation
between uncertainty in the coordinate x and momentum p is perhaps the most famous
example.

This cursory introduction raises several important questions. First, how is the wavefunc-
tion specified? So far we have simply asserted that it exists, without specifying how we find
it or what are its properties. Likewise, we insinuated above that the wavefunction be cast as
a function of many different physical parameters, x and p being only two examples. Which
parameters are acceptable for this purpose, and how do we pick one? Finally, although we
indicated that the wavefunction provides information on many parameters, we described
only how it informs us on the probability for the single parameter α on which it depends.
How do we obtain information on other observables from the wavefunction?

The remainder of this chapter presents a more extensive description of quantum me-
chanics by laying out the postulates of the theory (and a few of their implications) in a more
definite order.

4.1.2 The First Postulate: Introduction to Hilbert Space
For every physical system, there exists a state vector ψ of unit norm, an element of an

infinite-dimensional Hilbert spaceH , which defines statistically all physical properties of
the system. Every unit vector inH corresponds to a possible physical state of the system,

and every physical state of the system corresponds to a specific unit vector inH . 1

This first postulate simply asserts the existence and physical significance of the state
vector, without specifying its form or the manner in which it relates to physical observables.
The statement is of no direct value in describing any particular system; its significance,
rather, rests in laying the mathematical foundation for quantum mechanics. Whereas the
state of a classical system is specified by coordinates x and momenta p, the first postulate
states that the state of a quantum system is specified by an element in Hilbert space, a
particular flavor of vector space which plays a central role in the mathematics of quantum
theory.

Although a detailed examination of the characteristics of Hilbert spaces is beyond the
scope of this text, a cursory explanation is in order. For our purposes, a Hilbert space H
consists of a set of elements φ (termed vectors) which is closed under the addition and
(complex) scalar multiplication of its elements and which posesses a well-defined inner
product.2

1The statement that each state corresponds to a specific element inH is rather sloppily stated here. Many
equivalent representations are possible for any given state, since an arbitrary phase can be applied to the state
vector without changing the physical state so long as the same phase is applied to every state vector in the
Hilbert space.

2This is a list of salient features, not a technical definition. To be more precise, a Hilbert space is a
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The mathematical language here, although necessary, should not be intimidating. A
“set of elements” here means simply a collection of mathematical objects; examples might
be a particular set of numbers, vectors in three-dimensional space, or symmetry operations.
Closure under addition means that for any two objects φ and ψ in the setH , we know how to
add them–that is, we have a rule for what the notation “φ+ψ” means–and that the resulting
object φ + ψ is also an element inH . For example, the set of real numbers is closed under
addition since, for any two real numbers a and b, we know what a + b means and since the
resulting number c = a + b is also in the set of real numbers. In contrast, the set of real
numbers between 0 and 1 is not closed under addition since, for example, 3

4 +
1
2 = 11

4 is
outside the set. Likewise, closure under scalar multiplication means that for any complex
scalar α and any vector φ inH , the notation αφ has a well-defined meaning and corresponds
to a new vector which is also contained in H . The set of real numbers is not closed under
complex scalar multiplication since, for example, ia is not a real number; the set of complex
numbers, in contrast, is closed under this operation, as is the set of complex, three-element
vectors and the set of all matrices with complex elements.

Physically, the properties of addition and scalar multiplication imply that normalized,
linear combinations of state vectors produce new state vectors. (We will say more about
normalization in a moment). In quantum mechanics, it is often useful to decompose a
given state vector into a sum of other state vectors about which some particular physical
property is known. If we know the physical characteristics of the states φ1, φ2, ..., φn, for
example, it may be useful to write another state as a linear combination of these vectors,
i.e. ψ = α1φ1 + α2φ2 + ... + αnφn where α1, ..., αn are complex numbers. As we will see
later, knowledge of the properties of the states φ1, ..., φn then informs us about state ψ.
This additivity of state vectors in Hilbert space, where new physical states can correctly be
understood as linear combinations of other physical states, plays a fundamental role in both
the mathematical and physical characteristics of quantum theory.

In understanding how a state vector can (or should) be decomposed into other physical
states, the existence of an inner product for the elements of H plays a central role. In a
mathematical sense, an inner product is a particular type of mapping which takes any two
elements φ and ψ of a vector space and assigns to them a specific (complex) scalar, denoted
(φ, ψ). More precisely, for any three vectors ψ, φ, and χ and any complex scalar α, this
mapping satisfies four criteria:

1. (ψ, φ + χ) = (ψ, φ) + (ψ, χ)

2. (ψ, αφ) = α(ψ, φ)

3. (ψ, φ) = (φ, ψ)∗

4. (ψ, ψ) ≥ 0, with (ψ, ψ) = 0 if and only if ψ is the zero vector (the unique vector inH
for which φ + ψ = φ for all vectors φ).

complete inner product space, i.e. a vector space which posesses a well-defined inner product and such that
every Cauchy sequence of vectors converges (within the metric defined by the inner product) to a vector within
the space.
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Together, these statements imply a fifth condition, known as theCauchy Schwartz inequality:

|(φ, ψ)| ≤
√
(φ, φ)(ψ, ψ). (4.1)

The first two criteria state that the the inner product is linear in the addition of state
vectors and in scalar multiplication. The third item sets up a complex symmetry for the
inner product; up to complex conjugation, the inner product between two vectors does not
depend on the order in which they are specified. The complex conjugation property also
implies that the inner product of any vector with itself is real since (φ, φ) = (φ, φ)∗ and can
be taken as a measure of the “length” of a vector (in a mathematical, not physical, sense);
in fact, we define the vector norm of a vector φ to be the square root of this quantity and
denote it ‖φ‖ =

√
(φ, φ). We say a vector is normalized if ‖φ‖ = 1. Together with the last

inner product criterion, which requires that the inner product of any non-zero vector with
itself be positive, these properties imply that the inner product may be taken as a measure
of how “similar” two states are to one another; the larger the magnitude of the inner product
|(φ, ψ)|–relative to the magnitude of the vector norms ‖φ‖ and ‖ψ‖–the more similar the
two states should be considered.3 States which have inner product zero are said to be
orthogonal.

Both physically andmathematically, it is often convenient to identify a (possibly infinite)
set of vectors φ1, ...φn, ... such that every vectorψ inH can bewritten as a linear combination
ψ = α1φ1 + α2φ2 + .... Such a set is called a basis for H . It is one of the properties of
Hilbert spaces4 that a countable basis for H always exists5 , and that every basis for H is
countably infinite (i.e. no finite basis exists). Moreover, given a basis for H , it is easy to
construct from it an orthonormal basis, i.e. one for which every vector has unit norm and
is orthogonal to every other vector, (φi, φ j) = δi j .6

The practical utility of requiring our basis to be orthonormal becomes clear when we
seek to identify the coefficients α1, α2, ... in the expansion ψ = α1φ1 + α2φ2 + ... for an
aribtrary vector ψ. Observe what happens when we take the inner product of ψ with one of

3Technically, we should be more careful here. Although it is true that two states with a large inner product
will exhibit similar physical characteristics, it is not always true that two states with a small inner product
are physically very different. In fact, we often encounter states which have identical values of some physical
observable (energy, for example) but with an inner product of zero. We say that such states are degenerate
with respect to this observable. Often, two states may be degenerate with respect to one observable but
non-degenerate (i.e. distinguishable) with respect to another.

4This is not usually included directly as a defining feature of a Hilbert space. Some authors specify in the
definition that a Hilbert space must contain a countably dense set, which is equivalent. Others exclude this
property altogether from the definition and distinguish between separable and nonseparable Hilbert spaces,
i.e. those which do and do not posess a countable, dense set and thus a countable basis.

5Countable means that the elements of the set can be enumerated one at a time; that is, it is possible to
establish a “rule” for assigning exactly one positive integer to each vector (φ1, φ2, ...) such that every vector is
assigned an integer and no integer is assigned more than once. A finite set of vectors is trivially countable.
An infinite set need not be.

6Suppose φ1, φ2, ... is a countable basis forH . Begin by setting φ̃1 =
φ1
‖φ1 ‖

so that φ̃1 has unit norm. Next,

set φ̃2 =
φ2−(φ̃1,φ2)φ̃1
‖φ2−(φ̃1,φ2)φ̃1 ‖

. φ̃2 now has unit norm and is orthogonal to φ̃1. Proceed for the remaining vectors in
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the basis vectors φi, and use the linearity of the inner product to expand the result:

(φi, ψ) = (φi, α1φ1 + α2φ2 + ...)

= α1(φi, φ1) + α2(φi, φ1) + ... + αi(φi, φi) + ...

= αi (4.3)

where in the final equality we have made use of the orthogonality and normalization of the
basis vectors φ1, φ2, .... The result is that the coefficient αi for basis vector φi is none other
than the inner product (ψ, φi), i.e. that for an orthonormal basis φ1, φ2, ..., every vector ψ
inH may be written in the form

ψ =
∑

n

(φn, ψ)φn. (4.4)

In this basis, the norm of the vector may be expressed as

‖ψ‖2 =
∑

n

(φn, ψ)
2 =

∑
n

α2
n (4.5)

where it should be clear that the vector is well-defined only if the sum of the right hand side
of the quality converges.

An important consequence of this property is that we can represent any vector in the
Hilbert space as a sequence of numbers (α1, α2, ..., αn, ...) with respect to a given set of
orthonormal basis vectors φ1, φ2, .... This equivalence between the elements of abstract
Hilbert space and the more concrete set of numeric vectors (α1, α2, ...) is of great practical
assistance in navigating the wilds of Hilbert space.

From a physical perspective, the ability to decompose arbitrary state vectors in this form
will have profound consequences in our understanding of physical states in quantum theory.
As of yet, of course, we have provided no explanation of how the mathematical structure
of Hilbert space and, in particular, the knowledge of the state vector of a system translate
into an understanding of physical observables. This relationship will be the focus of the
remaining postulates.

The position representation
The principles of quantum mechanics can be formulated entirely in terms of an

abstract Hilbert space H without specifying any particular form for its elements. For
practical purposes, however, it is much more convenient to work in a specific Hilbert
space with a concrete mathematical representation for its elements. In the text boxes
offset from the statement of the postulates, we thus illustrate some basic workings

the same manner, i.e.

φ̃n =
φn − (φ̃1, φn)φ̃1 − ... − (φ̃n−1, φn)φ̃n−1

φn − (φ̃1, φn)φ̃1 − ... − (φ̃n−1, φn)φ̃n−1
, (4.2)

discarding any vectors for which the denominator is zero. The set {φ̃1, φ̃2, ...} then forms an orthonormal
basis forH .
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of quantum mechanics in the position representation, one of the most commonly used
formulations of quantummechanics. For simplicity, wewill consider only the dynamics
of a single particle moving in one dimension.

In the position representation, the dynamics of this system are formulated in the
abstract Hilbert space L2, the space of square-integrable functions of a single variable.
The elements of the Hilbert space L2 consist of all complex-valued functions f (x) such
that the integral ∫ ∞

−∞

f ∗(x) f (x)dx =
∫ ∞

−∞

| f (x)|2dx (4.6)

converges to a finite value. It is easy to see that the set of such functions is closed under
addition and scalable location since if f (x) and g(x) are square-integrable functions,
then ( f + g)(x) and α f (x) (for any complex scalar α) are also square-integrable.
Moreover, the inner product

( f , g) =
∫ ∞

−∞

f ∗(x)g(x)dx (4.7)

is always well-defineda and satisfies the properties of the inner product described in the
main text. Many different complete, orthonormal sets are available in L2. One example
is the Hermite functions

hn(x) =
(√
π2nn!

)− 1
2
(−1)ne

x2
2

dn

dxn e−x2
, n = 0, 1, 2, ... (4.9)

which we will encounter later in our analysis of the quantum harmonic oscillator.
According to our first postulate, the state of the physical system under consideration

(a single particle moving in one dimension) is completely described by some particular
function ψ(x) normalized to such that∫ ∞

−∞

ψ∗(x)ψ(x)dx = 1. (4.10)

In the position representation, this state vector is commonly referred to as the system
wave function. Our objective is now to learn how to identify the wave function for a
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particular system and how to use it predict the results of physical measurements.
aNote that (∫ ∞

−∞

f ∗(x)g(x)dx
)2
=

∫ ∞

−∞

∫ ∞

−∞

f ∗(x)g(x) f (y)g∗(y)dxdy

=
1
2

∫ ∞

−∞

∫ ∞

−∞

| f (x)|2 |g(y)|2dxdy +
1
2

∫ ∞

−∞

∫ ∞

−∞

| f (y)|2 |g(x)|2dxdy

−
1
2

∫ ∞

−∞

∫ ∞

−∞

| f ∗(x)g(x) − f ∗(y)g(x)|2dxdy ≤ ( f , f ) + (g, g). (4.8)

4.1.3 The Second Postulate: Hermitian Operators
To every measurable physical quantity A characterizing the state of a system, there

corresponds a Hermitian operator Â operating inH .

Just as the first postulate introduced us to state vectors in Hilbert spaces, the second
posulate introduces us to the concept of linear operators on Hilbert spaces. Just as the inner
product is a rule for assigning a complex number (φ, ψ) to each pair of vectors φ and ψ in
H , an operator Â is a rule for assigning to each vector φ in H some other vector Âφ, also
inH . An operator is said to be linear if it satisfies the two conditions

Âαφ = α Âφ

Â(φ + ψ) = Âφ + Âψ (4.11)

for every complex scalar α and all vectors φ and ψ in H . Linear operators play a variety
of important roles in quantum mechanics. In addition to defining measurable quantities,
they also determine the time evolution of the state vector, and hence the physical state, of
quantum systems.

In the last section, we saw that state vectors in a Hilbert space may be associated with
numeric vectors (α1, α2, ...), where the coefficients αn correspond to inner products with a
specified orthonormal basis φ1, φ2, .... In the same way, linear operators may be associated
with infinite matrices, two-dimensional arrays of complex numbers of the form

A11 A12 ...
A21 A22 ...
...

...
. . .

 (4.12)

where the coefficients Amn are the matrix elements

Amn = (φm, Âφn) (4.13)

of the operator Âin the orthonormal basis φ1, φ2, .... To see why this association is useful,
suppose we wish to calculate vector elements for the vector Âψ that results from the
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operation of a linear operator Â on some given state vector ψ. In the orthonormal basis
φ1, φ2, ..., we can calculate the vector elements of Âψ as

[Âψ]m = (φm, Âψ) = (φm, Â
∑

n

φn(φn, ψ))

=
∑

n

(φm, Âφn)(φn, ψ)

=
∑

n

Anm(φn, ψ) (4.14)

But this is none other than the matrix product
(φ1, Âψ)
(φ2, Âψ)

...

 =

A11 A12 ...
A21 A22 ...
...

...
. . .



(φ1, ψ)
(φ2, ψ)
...

 (4.15)

obtained using the matrix and vector representations for Âψ, Â, and ψin the φ1, φ2, .... It
is thus possible to draw a one-to-one correspondence between linear operators on a Hilbert
space and infinite dimensional matrices. Matrix-vector multiplication corresponds to the
action of an operator and arbitrary vector, while it is easily verified that matrix-matrix
multiplication corresponds to the composition of two linear operators Â and B̂ to form a
new operator ÂB̂.

AHermitian operator is a specific type of linear operator which, in quantum mechanics,
corresponds to a physically observable quantity. In a mathematical sense, the defining
feature of a Hermitian operator is that the equality

(Âφ, ψ) = (φ, Âψ) (4.16)

holds for all vectors φ and ψ inH . In short, within an inner product expression, the choice
of which vector a Hermitian operator acts on is independent of the result. In any matrix
representation, it is easily verified that the matrix elements of a Hermitian operator satisfy
the complex symmetry

Amn = A∗nm. (4.17)

This defining feature leads quickly to two additional characteristics of Hermitian op-
erators which are particularly significant in quantum mechanics and which both deal with
operator eigenvalues and eigenvectors. An eigenvector for a given linear operator Â is any
vector φ for which

Âφ = αφ (4.18)

i.e. for which the result of the operator Â acting on the vector is simply multiplication by
a (possibly complex) scalar α. The characteristic constant α is called the eigenvalue of the
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vector φ for the operator Â. A trivial example of an eigenvector for any linear operator is
the zero vector 0 since for any linear operator Â we have7

Â0 = 0 (4.19)

i.e. the zero vector 0 is an eigenvector of Â with eigenvalue 0. This “trivial” eigenvector
is usually of little interest to us, and when we speak of the eigenvectors of an operator, we
generally refer to non-zero vectors only.

With these definitions, we quickly find that every eigenvalue of a Hermitian operator Â
is a real number. To see this, suppose that φ is a non-trivial eigenvector of Âwith eigenvalue
α. (The statement is trivially satisfied for the zero vector 0.) By definition of a Hermitian
operator, we have8

α(φ, φ) = (φ, αφ) = (φ, Âφ) = (Âφ, φ) = (αφ, φ) (4.21)

The linearity and conjugation properties of the inner product imply that

(αφ, φ) = (φ, αφ)∗ = α∗(φ, φ), (4.22)

and since (again by the definition of the inner product) we know that for non-zero vectors
(φ, φ) > 0, we conclude that α = α∗, i.e. that α is a real number.

A similar argument quickly shows that eigenvectors of a Hermitian operator which have
distinct eigenvalues are orthogonal, i.e. their inner product is zero. Suppose that φ1 and φ2
are eigenvectors of a Hermitian operator Â with non-zero eigenvalues λ1 and λ2. Then

λ1(φ1, φ2) = (Âφ1, φ2) = (φ1, Âφ2) = λ2(φ1, φ2). (4.23)

Since λ1 and λ2 are different, non-zero numbers, this implies that (φ1, φ2) = 0, i.e. that the
two vectors are orthogonal. (The condition is trivially satisfied for both the zero vector and
for any non-zero eigenvector with eigenvalue zero).

The physical significance of these two properties of Hermitian operators (the reality of
their eigenvalues and the orthogonality of degenerate eigenvectors) is highlighted by our
next postulate.

Operators in L2

Our second postulate tells us that a Hermitian operator exists for each physical
observable. It does not, however, tell us how to identify such operators. In practice,
each operator must be identified empirically, by determining which Hermitian operators
give rise to the correct physical behavior. For our purposes, we take for granted the
results of what would otherwise be a rather arduous process: in the Hilbert space L2,
the operators corresponding to the position and momentum of a single particle are

7Since for the zero vector we have φ + 0 = φ for any vector φ inH , we see that

Âφ + 0 = Âφ = Â(φ + 0) = Âφ + Â0. (4.20)

Subtracting the quantity Âφ from both sides gives the result.
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given by

x̂ ≡ x·

p̂ ≡ −i~
d
dx

(4.24)

Where the notation “x·” indicates ordinary scalarmultiplication by the coordinate x, and
the symbol ~ represents the real-valued Planck’s constant. From these two definitions,
the operators corresponding to most physical observables can be calculated directly
by simply replacing the classical quantities x and p with the corresponding quantum
operators. For example, the kinetic energy operator takes in L2 the form

T̂ =
p̂2

2M
= −
~2

2M
d2

dx2 (4.25)

where M is the particle mass. A particularly important example in both classical and
quantum mechanics is the Hamiltonian for the system, the sum of the potential and
kinetic energy operators. If the classical potential energy V(x) of the system is a
function only of the particle position, then the quantum potential energy operator V̂
likewise (in L2) corresponds simply to multiplication by the potential V(x). In this
case, the Hamiltonian takes the simple form

Ĥ ≡ T̂ + V̂ = −
~2

2M
d2

dx2 + V(x) (4.26)

For example, suppose that our system wave function takes the form of the first Hermite
polynomial h0(x) defined by Eq. (4.9):

ψ(x) = h0(x) = π−
1
4 e−

x2
2 . (4.27)

Using the definitions above, we readily obtain

x̂ψ(x) = xψ(x)

p̂ψ(x) = i~π−1/4xe−
x2
2

T̂ψ(x) =
~2

2M
π−1/4

[
e−

x2
2 − x2e−

x2
2

]
=
~2

2M

(
1 − x2

)
ψ(x)

Ĥψ(x) =
~2

2M

(
1 − x2 − V(x)

)
ψ(x). (4.28)
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The last equality readily suggests the following observation: ifV(x) takes the harmonic
form V(x) = ~2

2M x2, then ψ(x)is an eigenvector of the Hamiltonian operator since

Ĥψ =
~2

2M
ψ(x). (4.29)

In fact, every Hermite function is an eigenvector of this particular Hamiltonian, with
eigenvalues

λn =
~2

M
(n + 1) (4.30)

that increase linearly with n.
In L2, we often refer to eigenvectors as eigenfunctions since each state vector takes

the form of a function of x. It is easy to see that neither x̂ nor p̂ have any eigenfunctions
in L2. For function f (x) to be in eigenfunctions of the x̂ operator, we require that

x̂ f (x) = x f (x) = λ f (x) (4.31)

for every point xbetween −∞ and ∞. But for the statement to be true at any value of
x = xo, we must have λ = xo. Clearly, this cannot be true for all values of x! Similarly,
in order for f (x) to be in eigenfunctions of the momentum operator p̂, we must have

p̂ f (x) = −i~
d
dx

f (x) = −i~ f ′(x) = λ f (x). (4.32)

This equation is satisfied for only one family of functions: f (x) = αei λ~ x , where α is
an arbitrary constant. Unfortunately, no such function is square-integrable and so can
never qualify as an element of L2. Despite these apparently discouraging findings, we
will see in the next section that both x̂ and p̂ possess well-behaved functions which
almost qualify as eigenfunctions and play much the same role in quantum mechanics.

4.1.4 Third Posulate: Eigenvalues of Hermitian Operators
For any physical observable, the only values which are possible to obtain in a

measurement are those in the spectrum of the corresponding Hermitian operator.

The physical plausibility of this postulate lies squarely on the the fact that eigenvalues
of a Hermitian operator are strictly real numbers. This characteristic is what ensures in
quantum theory that physical observables do not take on complex values. Nonetheless,
from a classical perspective the claim is rather surprising. In fact, it is this postulate which
from a physical perspective first strongly distinguishes classical and quantum mechanics.
Whereas in classical mechanics most physical observables have a continuous range of
values, in quantum mechanics many observables are allowed to have only specific discrete
(or “quantized”) values.
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Atomic spin was one of the earliest studied examples of this so-called “quantization”
effect in quantum mechanics. Experimentally, scientists observed that very small, elec-
trically neutral particles (e.g., silver atoms) posessed a magnetic moment, as though the
particle were spinning around an axis. By subjecting a beam of atoms to magnetic fields
of varying directions, the magnitude and orientation of the magnetic dipole moment could
be measured experimentally. However, instead of finding a continuously varying range of
magnitudes and orientations (as one would expect for classical particles), scientists found
that particles subject to an external magnetic field behaved as though every particle had a
magnetic dipole of exactly the same magnitude and oriented either exactly parallel to the
field or exactly opposite to it. According to the postulates of quantum mechanics, these two
possible outcomes (“up” or “down” with respect to the magnetic field or “ + 1′′ and “ − 1′′
in short-hand notation) correspond to the two eigenvalues of a spin operator acting in the
Hilbert space describing the state of the particles.

In such simple cases, the spectrum of a Hermitian operator consists simply of the set
of all its eigenvalues. Our postulate then tell us that when we measure the corresponding
physical property of the system, the value we observe must be contained within the spec-
trum of the Hermitian operator. Thus if an operator’s spectrum consists of the numbers
{−2,−1, 0,+1,+2}, then a measurement of the corresponding observable might return −1
or +2 but never −0.5 or +3. In such cases, we say that the spectrum of the operator is
discrete, i.e. it possesses only a countable (even if infinite) range of possible values.

Even quantum mechanically, however, not all physical observables are “quantized” in
the sense of having a discrete set of possible values. The position of a free (non-interacting)
particle, for example, might take on any value in three-dimensional space; its momentum
might take any value between positive and negative infinity. In quantum mechanics, these
observables correspond to operators with continuous spectra.

As indicated above, the discrete spectrum of an operator consists of the set of all its
eigenvalues. More formally, a number α is contained in the discrete spectrum of an operator
Â if (and only if) there exists a normalized vector φ such that

Âφ = αφ. (4.33)

Importantly, however, not all Hermitian operators have eigenvalues or eigenvectors. Wewill
see later, for example, that the operators corresponding to the coordinate and momentum of
a particle have no true eigenvalues. In such cases, the discrete spectrum of the operator is
said to be empty. For every Hermitian operator, however, there do exist vectors which are
âĂĲarbitrarily closeâĂİ to eigenvectors: families of normalized vectors ψ(α)ε defined for
some number α such that

αψ
(α)
ε ≈ Âψ(α)ε (4.34)

to an arbitrary degree of precision as ε → 0.9 If such a family of vectors exists for a given
number α, we say that α is contained in the spectrum of the operator Â. Note immediately
that by this definition, every eigenvalue is contained in the spectrum since in this case the



4.1 The Postulates of Quantum Mechanics 89

approximation is satisfied exactly; thus the discrete spectrum is a subset of the spectrum.
Those points αwhich satisfy the approximation (4.34) but are not true eigenvalues constitute
the continuous spectrum.

Different operators have different types of spectra. Some operators (such as the spin
operator discussed above) have purely discrete spectra; others (e.g. position andmomentum)
have purely continuous spectra; still others have both discrete and continuous contributions.
Later, when we learn how to construct mathematically the operators corresponding to a
given physical observable, we will be able to predict an operator’s spectrum a priori.

Just as in the discrete case, it is straightforward to show that all elements in the continuous
spectrum of a Hermitian operator must be real numbers. Similarly, just as eigenvectors
corresponding to different eigenvalues are orthogonal to one another, vectors ψ(α)ε and ψ(β)ε
corresponding to two different points α and β in the spectrum of Â approach orthogonality
in the limit that ε → 0. Thanks to these similar properties, the “almost” eigenvectors φ(α)ε
corresponding to points in the continuous spectrum of a Hermitian operator behave in much
the same way as the true eigenvectors corresponding to points in the discrete spectrum.
For this reason, in what follows we will generally work only with discrete eigenvectors
and eigenvalues, even when discussing operators having continuous spectra. Although
not formally correct, this simplified treatment is substantially more straightforward in its
development and is directly analogous to the more nuanced statement in terms of continuous
spectra.

This definition of the spectrum of an operator completes our formal statement of the thid
postulate. As of yet, althoughweknowwhat set of valuesmay be observed in ameasurement,
we have no indication of how the physical state of the system determines which value we
measure. From our earlier postulates, of course, we know that the information must
somewhere be contained in the state vector; but so far we do not know how to access
it. As might be surmised already, the phsyical states represented by the eigenvectors of a
Hermitian operator are specially linked to the observation of their corresponding eigenvalues
in experiment. The reality of Hermitian eigenvalues (or points in a continuous spectrum)
and the orthogonality of Hermitian eigenvectors (or “almost” eigenvectors for operators
with continuous spectra) will then be of special significance since these features will allow
us to decompose arbitrary state vectors into contributions from different eigenstates.

“Eigenfunctions” for x̂ and p̂
We noted in the last section that the operators x̂ and p̂ possess no true eigenfunctions

in L2. The discrete spectra for these two operators are thus empty; the range of
possible experimental values for these two observables is thus determined entirely by

9 The approximate equality is meant in the sense that the quantity ‖ Âψ(α)ε −αψ
(α)
ε ‖ can be made arbitrarily

small by choosing a suitably small value of ε. This is not the usual definition of the spectrum of an operator,
but is equivalent and is presented here for its relative transparency. Importantly, this definition applies only to
the spectrum of Hermitian operators. See Jordan for a more standard definition of the operator spectrum and
Stone for a detailed treatment.
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the continuous spectrum. In fact, for both operators, the continuous spectrum covers
the entire real line.

To see this, consider the normalized family of step functions defined by

d(ε)xo (x) =

{
1√
ε
, xo −

ε
2 ≤ x ≤ xo +

ε
2

0, otherwise.
(4.35)

for any real numbers xo and ε . As ε →0, we see that

x̂d(ε)xo (x) ≈ xod(ε)xo (x) (4.36)

since

‖ x̂d(ε)xo (x) − xod(ε)xo (x)‖
2 =

∫ ∞

−∞

(
xd(ε)xo (x) − xod(ε)xo (x)

)2
dx =

ε2

12
. (4.37)

Moreover, if |x1 − x2 | > ε , then the functions d(ε)x1 (x) and d(ε)x2 (x) are both normalized
and orthogonal.

Similarly, consider the family of functions

ρ
(ε)
po (x) =

(
2
πε

)1/2
e−ipox sin

(
ε
2 x

)
x

. (4.38)

As ε → 0, this family of normalized functions serve as approximate eigenfunctions for
the momentum operator, with approximate eigenvalues ~po. In fact, the vector norm
‖ p̂ρ(ε)po (x) − ~poρ

(ε)
xo (x)‖

2 approaches zero as ε2

12 , just as we saw for the functions d(ε)xo (x)
with the x̂ operator.a

Given this behavior, it is natural to ask what happens to the functions themselves as
ε → 0. Indeed, one sometimes sees the limit

δxo(x) ≡ lim
ε→0

[
d(ε)xo (x)

]2
(4.39)

used to define theDirac delta function, a somewhat mystical function with the property
that ∫ ∞

−∞

dxδxo(x) f (x) = f (xo) (4.40)

for any function f (x). Unfortunately, no true function satisfies this criterion since (just
as in the limit above) it would take on an infinite value at x = xo. Similarly, we often
speak informally of the plane waves e−ipox noted in the last text box as eigenfunctions of
p̂. However, the plane waves are not square-integrable and thus are not valid elements
of L2.
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The proper mathematical role for both the Dirac delta functions and the plane
waves in L2 is as a tunable family of distributions. A distribution is a particular type of
mapping which matches vectors in L2 with complex numbers. For example, the Dirac
delta distribution maps every function f (x) to its value at xo:∫ ∞

−∞

dxδxo(x) f (x) ≡ f (xo) (4.41)

Similarly, the Fourier integral distribution maps each function f (x) to its Fourier
transform f̃ (k) evaluated at k = ko:

f̃ (ko) ≡

∫ ∞

−∞

dxeikox f (x). (4.42)

It is to these two distributions that the near-eigenstates of the x̂ and p̂ operators converge
in the sense that ∫ ∞

−∞

dxδxo(x) f (x) = f (xo) = lim
ε→0

ε
1
2

(
d(ε)x , f

)
(4.43)

∫ ∞

−∞

dxeikox f (x) = f̃ (ko) =
1
√

2π
lim
ε→0

ε
1
2

(
ρ
(ε)
ko
, f

)
. (4.44)

aThese properties are perhaps easiest to verify in the Fourier domain where ρ(ε )po (x) is converted to
simply d(ε )po (k).

4.1.5 The Fourth Postulate: Probabilities
In any experimental measurement of an observable a corresponding to Hermitian

operator Â with a purely discrete spectrum, the probability of obtaining a value between
α1 and α2 is given by

P(α1 ≤ a ≤ α2) =
∑

α1≤λn≤α2

|(φn, ψ)|
2 (4.45)

where the vectors φ1, ..., φn, ... form a complete, orthonormal set of eigenvectors for the
operator Â and λ1, ..., λn, ... are the corresponding eigenvalues.

Given a Hermitian operator Â, the last postulate identifies for us the possible values we
might obtain in a measurement of the corresponding observable - namely, the eigenvalues of
Â. Given a state vector ψ, our fourth postulate identifies the probabilities of obtaining each
possible result - namely the squared projection of the state vector ψ onto the corresponding
eigenvector φn. This fourth postulate begins finally to make concrete the implication of our
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first postulate that the state vector ψ contains information regarding the physical state of our
system.

The physical implications of these postulates are indeed profound. Recall that our first
postulate stated that the state vector ψ contains all physical information which can be known
about the system. Our present postulate implies that, even with complete knowledge of the
state vector ψ, the outcome of any given experiment can be predicted only in a statistical
sense. In any given measurement, many different outcomes are possible, even when the
state vector ψ is known in advance. Only if the state vector ψ is itself an eigenvector φn
(so that P(α1 ≤ a ≤ α2) =1 if α1 ≤ λn ≤ α2 and zero otherwise) can the result of an
experiment be predicted with absolute confidence. Even in this case, however, the values
of some physical observables must remain uncertain. Indeed, certain pairs of physical
observables - most notably, the position operator x̂ and the momentum operator p̂ - share
no eigenvectors in common. Thus if the state vector for a particle is such that its position
is known precisely, its momentum must be highly uncertain. This is but one example of
Heisenberg’s celebrated uncertainty principle.

The physical, and indeed philosophical, implications of the uncertainty inherent in
quantum mechanics remains a subject of debate today.What is clear, however, is that no
other physical theory captures the workings of the universe around us in such great detail
and with such great accuracy as has been achieved by quantum theory. Regardless of
the philosophical consequences, quantum theory has tremendously improved our ability to
describe and predict physical processes.

As should be expected by this point, the validity of these physical assertions rests
squarely upon the mathematical properties of Hilbert spaces and, in particular, upon the
unique characteristics of Hermitian operators. In the case of a Hermitian operator Â
with a purely discrete spectrum (as in our statement of the postulate above), the critical
mathematical statement is that the eigenvectors of any Hermitian operator form a complete
basis for the entire Hilbert space. More explicitly, this means that any state vector ψ can be
written exactly as linear combination of the form

ψ =
∑

n

(φn, ψ)φn (4.46)

where φ1, φ2, ... are the (orthonormal) eigenvectors of some Hermitian operator Â. Once
again, the mathematical properties of Hermitian operators are found in quantum mechanics
to have profound physical implications. Indeed, were the set of eigenvectors φ1, φ2, ... not a
complete set, then according to our postulate the probability P(−∞ ≤ a ≤ ∞) of obtaining
any value would be less than one. In some measurements, the system would apparently not
exist!

Although simple to state, the assertion that an expansion of the form (4.46) always exists
is not simple to demonstrate. Moreover, both the mathematical statement ande the physical
postulate are more complicated to state (let alone prove) in the case of an operator Â whose
continuous spectrum is nonempty. In the continuous case, the corresponding expressions
involve an integral over contributions from different points in the spectrum of the operator
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Â. As neither the proof of the expression (4.46) nor the distinction between discrete and
continuous spectra play a material role in our development of quantum mechanics, we
omit them here. For a concise introduction to these topics see Thomas Jordan’s excellent
monograph Linear Operators for Quantum Mechanics; for a more detailed discussion, see
M. H. Stone’s authoritative Linear Transformations in Hilbert Space.

Before we move on to our next postulate, it is instructive to consider what happens when
we calculate the expectation value or average of a given operator Â. Using our cumulative
distribution function P(α1 ≤ a ≤ α2), the expectation value is in general calculated as

〈a〉 =
∫ ∞

−∞

αdP(−∞ ≤ a ≤ α) (4.47)

where the integral is to be understood in the Riemann-Stieltjes sense∫ β

α
g(x)dF(x) = lim

N→∞

N∑
n=1

g(xn) [F(xn) − F(xn−1)] (4.48)

where the sequence x0 < x1 < ... < xN divides the interval [α, β] into increasingly smaller
subintervals. When P(−∞ ≤ a ≤ α) is a differentiable function of α, this integral is
equivalent to

〈a〉 =
∫ ∞

−∞

α
dP
dα

dα. (4.49)

This is the form obtained for operators of purely continuous spectra. For operators with
purely discrete spectra, the excitation value is instead calculated by expanding the cumulative
distribution function P(−∞ ≤ a ≤ α) in terms of the eigenstates φ1, φ2, ... to obtain from
Eq. (4.48):

〈a〉 =
∑

n

λn |(φn, ψ)|
2. (4.50)

But since the vectors φn are both complete and orthonormal, this sum is equivalent to

〈a〉 =

(∑
n

φ∗n

)
Â

(∑
n

φn(φn, ψ)

)
= (ψ, Âψ). (4.51)

In fact, the final equality is valid in general, for operators with both discrete and continuous
spectra. This result will be extremely useful to us in calculating the properties of physical
systems.

Probabilities for continuous spectra
Although a general discussion of operators with continuous spectra is beyond the

scope of our discussion here, we can provide a brief explanation of how probabilities
are calculated for the x̂ and p̂ operators. Our first requirement is to attain an expansion
analogous to Eq. (4.46) in terms of x̂ and p̂ “eigenstates.” Beginning with the x̂
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operator, consider the expansion

f (x) ≈ fN (x) =
N∑

n=0
d(εN )xn (x)

(
d(εN )xn , f

)
(4.52)

with N an integer, L a real constant, εN =
2L
N , and xn = L

(
2n
N − 1

)
. As L → ∞ and

N →∞, the approximation becomes exact for any function f (x) in L2 as the functions
d(εN )xn (x) approximate each segment of f (x) on smaller and smaller intervals.

It should come as no surprise, then, that we can approximate the probability P(α1 ≤
x ≤ α2) of finding a particle with a coordinate between α1 and α2 as a sum over the
contributions from each approximate eigenfunction:

P(α1 ≤ x ≤ α2) ≈
∑

α1≤xn≤α2

���(d(εN )xn , ψ
)���2 . (4.53)

Indeed, for α1, α2 ∈ [−L, L], the approximation becomes exact as N → ∞, converging
to the integral

P(α1 ≤ x ≤ α2) = lim
N→∞

∑
α1≤xn≤α2

|ψ(xn)|
2εN =

∫ α2

α1

|ψ(x)|2dx. (4.54)

Similarly, by expanding in terms of approximate momentum eigenfunctions

f (x) ≈
N∑

n=0
ρ
(εN )
kn
(x)

(
ρ
(εN )
kn

, f
)
, (4.55)

we can calculate the probability of observing a momentum value between α1 and α2 as
the integral

P(α1 ≤ p ≤ α2) = lim
N→∞

∑
α1≤~kn≤α2

��ψ̃(kn)
��2 εN =

∫ α2/~

α1/~

��ψ̃(k)��2 dk . (4.56)

In fact, these results are a special case of a more general principle regarding the
spectra of Hermitian operators. Rigorous analysis shows that for every Hermitian
operator Â there exists a family of Hermitian spectral projection operators Êα defined
for every real number α such that

1. ‖Êαψ‖ ≤ ‖ψ‖ for every vector ψ and every real number α̂.

2. Ê2
α = Êα.

3. If α ≤ β, then ÊαÊβ = Êα = ÊβÊα.
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4. For any ε > 0, we have limε→0 Êα+εψ = Êαψ for any ψ and all α.

5. For any vector ψ, we have limα→−∞ Êαψ = 0, and limα→∞ Êαψ = ψ.

6. For any vectors ψ and φ, we have(
φ, Âψ

)
=

∫ ∞

−∞

αd
(
φ, Êαψ

)
. (4.57)

In the last expression, the integral is to be understood as the Riemann-Stieltjes integral
defined in the main text.

With this definition, we can provide a general statement of our postulate. For any
Hermitian operator Â – whether its spectrum is continuous, discrete, or mixed – the
probability of measuring the observable a between α1 and α2 is given by

P(α1 ≤ p ≤ α2) =

∫ α2

α1

d‖Êαψ‖2 (4.58)

where ψ is the wavefunction of the system. Given our results above, the form for the
spectral family of operators for x̂ and p̂ are easily verified to be defined by the behavior

Êxoψ(x) = ψ(x)Θ(xo − x) (4.59)

Êpoψ(x) =
1

2π

∫ po/~

−∞

e−ik xψ̃(k)dk (4.60)

where Θ(x) is a step function defined to be 0 for negative values and 1 for positive
values.

4.1.6 The Fifth Postulate:
In any experimental measurement of an observable a corresponding to Hermitian

operator Â, the state of the system immediately following the measurement is given by the
normalized state vector

ψ′ ∝
∑
λn=α

(φn, ψ)φn (4.61)

where α is the value of the observable a actually observed in the experiment, φ1, ..., φn, ...
form a complete, orthonormal set of eigenvectors for the operator Â, and λ1, ..., λn, ... are

the corresponding eigenvalues.
If the spectrum of the operator Â is non-degenerate at the point α (that is, if there is only
one distinct eigenvector φn with eigenvalue α), then the state vector for the system after the

measurement is simply

ψ′ = φn. (4.62)
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Our last two postulates have allowed us to describe statistically the outcome of any given
measurement. Our next postulate describes the effect of an experimental measurement on
the system itself. At one level, the postulate is unsurprising. It merely states that when we
conduct an experiment on a physical system, we inevitably perturb it from its pre-experiment
state. What is perhaps surprising is that the postulate presents this experimental perturbation
as a fundamental part of the measurement process with a precisely defined outcome on the
state of the system. Moreover, this outcome is independent of our experimental design or
the care with which we conduct our measurement. Fundamentally, these concept are closely
tied to the Heisenberg uncertainty principle described in the last postulate.

A Physical Example

A concrete physical example may help to clarify the content of the postulate. Suppose we
wish to find the position of a single atom on a flat surface. One possible means of locating
the atom is to scan across the surface with a tightly-focused laser beam, resonant with one
of the absorption frequencies of the atom. When we detect fluorescent signal emitted at the
resonant atomic frequency, we know that the laser beam is focused on the atom. The spatial
resolution of this technique is limited by the finite spot size (proportional to the wavelength)
of our laser beam. Thus a visible laser could identify the position of the atom to within
a few hundred nanometers, while an x-ray source could (in principle) locate the atom to
within a few Ångströms.

Now consider the effects of this measurement process on the atom itself. While laser
excitation gives rise to fluorescence and alerts us to the position of the atom, it also gives
rise to local heating effects and scattering events that can displace the atom from its initial
position. In fact, the amount of kinetic energy that may be imparted to the atom is inversely
proportional to the wavelength. Thus while a beam of relatively low-energy visible light
may only weakly perturb the atom, a high-energy x-ray beam is quite likely to send the atom
hurtling through space far from its initial position.

In this simple, hypothetical example, we see that our efforts to determine the location
of the atom more precisely using a high-energy excitation source also give rise to greater
uncertainty in the momentum of the atom following the measurement. For this particular
experimental setup, it is thus impossible to know both the position and momentum of the
atom with high certainty. The striking feature of our fifth postulate is that it asserts that this
inverse uncertainty relationship is a fundamental feature of physical systems, independent
of our experimental details. No matter how carefully we conduct our measurement, how
well calibrated are our instruments, or how cleverly we design our experiment to avoid
perturbation, we will ultimately face the same limiting uncertainty relationship.

To see how these conclusions follow from this postulate just stated, let us consider
the same localization problem from a strictly quantum mechanical perspective, with no
reference to laser beams, spot size, or any other knowledge of how the experiment is
actually conducted. We specify only that at the start of the experiment the state vector ψ of
the system is such that the expected momentum value is zero in both the x and y dimensions
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and that there is equal probability of observing the atom at any point on the surface. The
probability density px(x, y) for observing the particle in the vicinity of the point (x, y) is
then simply the flat distribution

px(x, y) =
1
A

(4.63)

where A is the total area of the surface. Now suppose that after conducting a measurement
on the system we have identified that the particle is located at the point (xo, yo) to within an
error of ±ε/2 in each dimension.10 As described in detail in the text box, after projecting
the wave function onto the x̂ and ŷ “eigenvectors” having eigenvalues within the intervals
[xo − ε/2, xo + ε/2] and [yo − ε/2, yo + ε/2], we obtain a modified probability density

px(x, y) =


1
ε2 ,

x ∈ [xo − ε/2, xo + ε/2]
y ∈ [yo − ε/2, yo + ε/2]

0, otherwise.
(4.64)

The corresponding probability density pp(px, py) is given by

pp(px, py) =
4

π2ε2

sin2 (
ε
2 px

)
px

2

sin2 (
ε
2 py

)
py

2 . (4.65)

As our experimental error ε decreases, the position probability density px(x, y) becomes
increasingly sharply peaked around the point (xo, yo), while the momentum probability
density pp(px, py) broadens in the same proportion. We thus obtain from a completely
generic argument - independent of the design of our experiment - the same conclusion we
reached in our hypothetical laser fluorescence experiment: that any measurement which
precisely determines the position of a particle must necessarily introduce correspondingly
large uncertainty into its momentum.

Simultaneous Measurability

Of course this inverse relationship between certainty and position and momentum is but
one example of the far-reaching consequences of this postulate. An unlimited number
of similar “uncertainty relations” could be identified: position and momentum, angular
momentum along orthogonal axes, position and energy. This begs the question: under what
circumstances is it possible for two different observables a and b to simultaneously take on
precisely determined values?

In part, this question is already answered by our last postulate. Under our fourth
postulate, we saw that the value of an observable a can be predicted with certainty only of

10A more realistic analysis would allow for “soft” error bounds and, in most experimental setups, radial
symmetry. For example, a Gaussian probability density would be realistic for laser-based experiment. Our
use of sharp cutoffs and rectangular error bounds is purely for convenience; the physical implications are
independent of the detailed functional form.



98 Chapter 4. Quantum Dynamics

the wavefunction of the system is an eigenvector of this corresponding Hermitian operator
Â. By extension, a quantum state ψ can have well-defined values of both a and b only if
ψ is an eigenstate of both Â and B̂. Our fifth postulate adds to this condition the assertion
that the measured value of an observable a can be unaffected by the measurement of an
additional observable b if, and only if, the state vector ψ of the system is an eigenvector of
both Â and B̂. For if the initial state ψ of the system is an eigenvector of Â with eigenvalue
α, then measurement of the observable a will yield the definite value α and will leave the
state of the system unperturbed since if {φ1, φ2, ...} is the orthonormal set of eigenvectors
of Â, then

ψ′ =
∑
λn=α

φn(φn, ψ) = ψ. (4.66)

Likewise, if ψ is an eigenvector of B̂ with eigenvalue β, then measurement of the observable
b leaves the state of the system unchanged. Thus measurement of the quantities a and b
may be repeated indefinitely with no perturbation of the system. On the other hand, if the
initial state vector ψ is not a simultaneous eigenstate of Â and B̂, then measurement of one
observable will necessarily influence the results of a measurement on the other observable.

Commuting Operators

In light of these observations, it is natural to ask under what circumstances a vector ψ can
be a simultaneous eigenvector of two operators Â and B̂. It turns out that this is possible if
and only if the operators Â and B̂ commute with respect to the vector ψ. Two operators are
said to commute if

ÂB̂ = B̂ Â, (4.67)

that is, if the order of operations of Â and B̂ does not matter. The operator

[Â, B̂] ≡ ÂB̂ − B̂ Â (4.68)

is called the commutator of the two operators. By definition, Â and B̂ commute if and only
if their commutator is zero.

To see how commutation is related to the existence of simultaneous eigenstates, suppose
that the state ψ is a simultaneous eigenstate of both Â and B̂ with eigenvalues α and β. Then

ÂB̂ψ = αβψ = B̂ Âψ. (4.69)

Thus, at least with respect to action on the vector ψ, the operators Â and B̂ commute.
On the other hand, suppose that the operators Â and B̂ possess pure point spectra

and commute for all vectors. We claim that there exists a complete, orthonormal set of
vectors {ψ1, ψ2, ψ3, ...} which are eigenvectors of both Â and B̂. The proof of this assertion
is somewhat complicated but is worth going through in detail since it introduces several
additional concepts important in the mathematics of quantum mechanics.
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Note first that if ψ is an eigenvector of Â with eigenvalue α, then the vector B̂ψ is also
an eigenvector of Â with eigenvalue α since

Â(B̂ψ) = B̂ Âψ = α(B̂ψ). (4.70)

If the eigenvalue α is non-degenerate, then necessarily B̂ψ ∝ ψ, and ψ is also an eigenvector
of B̂ with some eigenvalue β. If all the eigenvalues αn of Â were non-degenerate, then we
would be done; the eigenvectors φn would in this case already form a complete, orthonormal
set of simultaneous eigenvectors of Â and B̂.

If the eigenvalue α is degenerate, then let φn1, φn2, ... be those vectors from the orthonor-
mal basis of eigenvectors of Â with eigenvalue α. The set of all linear combinations of this
orthonormal set of vectors defines a subspaceMα of the Hilbert spaceH : a set of vectors
contained in a Hilbert space which themselves form a Hilbert space, being closed under
addition and scalar multiplication and using the same inner product as the parent spaceH .11
In fact, any vector in this subspace is also an eigenvector of Âwith eigenvalue α. Conversely,
the set of all linear combinations of the orthonormal eigenvectors {φn |n < {n1, n2, ...}} also
forms a subspaceM⊥α whose elements are orthogonal to every vector inMα. The subspace
M⊥α is termed the orthogonal complement ofMα.

For any vector χ in the parent Hilbert spaceH , we now define the projection of χ onto
the subspaceMα to be the vector

Îα χ =
∑

k

φnk (φnk, χ). (4.71)

Inherent in this definition is the definition of a projection operator Îα which projects vectors
onto the subspaceMα. For every vector χ, the projection operator Îα thus retains those
components that are contained in the subspaceMα. Note that projection onto the subspace
Mα is precisely the operation prescribed in our first postulate for determining the post-
measurement state of our system. Conversely the projection operator Î⊥α ≡ 1̂ − Îα is easily
verified to perform the equivalent projection onto the orthogonal subspaceM⊥α . It is easily
verified that both Îα and Î⊥α are both Hermitian and idempotent (i.e. Î2

α = Îα). In fact, these
two characteristics are the defining feature of a projection operator.

Now suppose that the vector χ is an eigenvector of B̂ with eigenvector β. We claim
that the vector Îα χ is also an eigenvector of B̂ with eigenvector β. For χ can always be
decomposed as

χ = Îα χ + Î⊥α χ. (4.72)

Since Îα χ is contained in the subspaceMα, the commutation of Â and B̂ imply that B̂Îα χ
is also contained inMα. The converse argument using the projection operator Î⊥α shows

11If the set {φn1, φn2, ...} contains only a finite number N of vectors, this should technically be termed an
N-dimensional unitary space.
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the B̂Î⊥α χ is also contained in the orthogonal complementM⊥α . As a result, by applying the
operator Îα to the eigenvector equation B̂χ = βχ, we obtain

B̂Îα χ = β Îα χ. (4.73)

Thus Îα χ is an eigenvector of both Âand B̂. By repeating this procedure for every eigenvector
χnof B̂, and if necessary using the Graham-Schmidt orthogonalization procedure, we can
construct an orthonormal set of vectors {ψ1, ψ2, ...} that are eigenvectors of B̂ and span
the subspaceMα. Repeating this procedure for every eigenvalue φn of Â, this set can be
extended to span the entire Hilbert spaceH .

Bra-Ket Notation

Finally, a word on notation.The notation we have used so far for representing vectors
and inner products is commonly adopted in the mathematics literature. In the physics
and chemistry literature, an alternative notation which is in some cases more convenient
(although also in some cases less precise) is widely accepted. In this bra-ket notation, a
vector ψ is represented by a left-facing angular bracket |ψ〉, termed a ket. Thus the symbols
|ψ〉, |a〉, and |3〉 are all understood immediately to refer to vectors in some Hilbert spaceH .
In complement, we denote by right-facing angular brackets 〈 | the distribution defined by
taking the inner product with some specific vector in the Hilbert space. (Recall that we have
already been introduced to distributions in our discussion of the Dirac delta function.) These
distributions are referred to as bras. For example, the bra 〈φ| is understood to represent the
distribution defined by

〈φ| ψ〉 = (φ, ψ) (4.74)

for every vector |ψ〉 inH .12
The major utility of bra-ket notation is in defining certain operators, in particular the

projection operators Îα referred to in the last section. Using the definitions just presented,
we have immediately in bra-ket notation

Îα =
∑
λn=α

|φn〉 〈φn | . (4.75)

In what follows, we will alternate between these two forms of notation as convenience
dictates. So long as both forms are used self-consistently, there is little danger of ambiguity.

Projection Operators for Position and Momentum
In order to calculate the post-measurement probability densities described inEqs.(4.64)

and (4.65), we must first provide a more general statement of the postulate accounting
for operators with continuous spectra. If Êα is the spectral projection operator described
in the last text box for the operator Â, our fifth postulate states that the post-measurement

12One sometimes hears the bra 〈ψ | referred to as the complex conjugate of the ket |ψ〉. Formally, this is
incorrect: in fact, 〈ψ | is not even an element of the same Hilbert space as is |ψ〉.
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state of the system is given by

ψ′ ∝
(
Êα+ ε2 − Êα− ε2

)
ψ (4.76)

where ψ is the initial state of the system, α is the measured value, and ± ε2 is the error
on the measurement.a This statement includes the case of observables with discrete
spectra since it is easily verified from the definition of Êα that for an operator Â with a
purely discrete spectrum

Êα =
∑
λn≤α

|φn〉 〈φn | (4.77)

where the vectors φ1, φ2, ... are the orthonormal eigenvectors of Â with eigenvalues
λ1, λ2, .... In the case of a measurement on the x coordinate, our previous results on
the form for the operator Êx in L2 indicate that for an initial wave function ψ(x), the
post-measurement state of the system is given by simply

ψ′(x) =


ψ(x)∫ xo+
ε
2

xo−
ε
2
|ψ(x)|2

dx, xo −
ε
2 ≤ x ≤ xo +

ε
2

0, otherwise.
(4.78)

To analyze the problem given in the text, we work in a two-dimensional version of
L2: theHilbert space of all square-integrable functions of two real variables x and y. All
the results we previously obtained in the one-dimensional position space of functions of
a single real variable transfer directly. In the new space, we have two position operators,
one for the x coordinate and one for the y coordinate. The corresponding momentum
operators in each dimension take the form of partial derivatives with respect to x or y.

To obtain the starting probability density of Eq. (4.63), we take the initial wave
function for system to be simply

ψ(x, y) =
1

A
1
2

(4.79)

for coordinates (x, y) on the surface and zero elsewhere. Here A is the area of the
surface. The expected value for the momentum in both the x and y dimensions is easily
found to be zero, as required. A simple extension of our one-dimensional analysis
implies immediately that the post-measurement wave function is simply

ψ′(x, y) =


1
ε ,

x ∈ [xo − ε/2, xo + ε/2]
y ∈ [yo − ε/2, yo + ε/2]

0, otherwise.
, (4.80)
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giving rise to the probability density px(x, y) of Eq. (4.64). The probability density
pp(px, py) of Eq. (4.65) follows immediately as the squared absolute value of the
Fourier transformed wave function

ψ̃(kx, ky) =
∫ ∞

−∞

dx
∫ ∞

−∞

dyeixkxeiykyψ(x, y). (4.81)

Before closing, it is interesting to note one final relation between the x̂ and p̂ oper-
ators. In the main text, we showed that operators can have simultaneous eigenvectors
only if they commute. What is the commutator of the x̂ and p̂ operators? If f (x) is any
function in L2, then we have

p̂x̂ f (x) = −i~
d
dx

x f (x) = −i~ f (x) − i~ f
d
dx

f (x) = (−i~ + x̂ p̂) f (x) (4.82)

so

[x̂, p̂] = i~. (4.83)

In fact, our order of presentation is somewhat inverted. In an empirical development
of quantum mechanics, this canonical commutation relation is generally inferred from
the classical mechanics of position and momentum and used to define the x̂ and p̂
operators.

aThe definition of the error here is intentionally vague. A precise statement is difficult. It should be
clear, however, that the error referred to here deals with the intrinsic physical interaction between the
measuring device and the system, not to external error such as mis-calibration or insensitive readout.

4.1.7 The Sixth Postulate: Quantum Dynamics
In the absence of outside perturbation, the wave vector of the system evolves according to

the differential equation

i~
d
dt
ψ(t) = Ĥψ(t), (4.84)

where Ĥ is the Hamiltonian operator for the system, corresponding to the total energy
observable.

Our previous postulates have focused on the information that the state vector ψ provides
us on the state of the system at a given instant in time. Real systems, however, are rarely
static. Our final postulate allows us to predict the evolution of the state vector - and thus the
physical characteristics of the system - as a function of time.

The Time-Dependent Schrödinger Equation

At the core of our six postulate lies the linear, first-order differential equation (4.84),
commonly known as the Time-Dependent Schrödinger Equation after the Austrian physicist
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Erwin Schrödinger who first recognized it significance. Despite its mathematical simplicity,
the solution of this equation is in general highly nontrivial and will occupy much of the
focus of the next section. At present, we restrict ourselves to some cursory observations
on the mathematical and physical implications of the equation, noting only the simplest
possible solutions.

At the start, a few key mathematical features are worth noting. First, let us clarify what
is meant by the notation ψ(t). Strictly speaking ψ(t) represents a continuous, one-parameter
sequence of state vectors, each of which is a member of the abstract Hilbert space H and
represents the state of our physical system at a particular time. This continuity in the
parameter t allows us to impose the typical framework of single-variable calculus on the
vector-valued function ψ(t): limits, integrals, and the time derivative of Eq. (4.84). The
derivative, in particular, is defined by the limit13

d
dt
ψ(t) = lim

ε→0

ψ(t + ε) − ψ(t)
ε

. (4.86)

Note that by this definition and Eq. (4.84), the state vector ψ(t) is necessarily continuous
in time, i.e. can undergo no instantaneous jumps in value. Moreover, the normalization of
the state vector is conserved:

d
dt
‖ψ(t)‖2 =

d
dt
(ψ(t), ψ(t)) =

(
d
dt
ψ(t), ψ(t)

)
+

(
ψ(t),

d
dt
ψ(t)

)
=

i
~

(
Ĥψ(t), ψ(t)

)
−

i
~

(
ψ(t), Ĥψ(t)

)
= 0, (4.87)

where in the last equality we have relied on on the Hermitian property of the Hamiltonian
Ĥ.14

With these mathematical observations in hand, let us note some physical consequences.
First, note that the time evolution of the system is entirely deterministic. Nondeterministic,
random behavior appears only when external measurements are performed on the system.
Second, the continuity of the state vector in time implies that in quantummechanics physical
observables always change smoothly in time, i.e. never through instantaneous jumps in
value. Third, the conservation of the norm ensures that if ψ(0) is a valid state vector, then
ψ(t) remains a valid state vector for all time. And, finally, because the differential equation
Eq. (4.84) is linear in the state vector ψ(t), the superposition principle we noted earlier is
unaffected by time propagation. In other words, if ψ(0) can be decomposed as

ψ(0) =
∑

n

cnφn, (4.88)

13As usual, a sequence of vectors fn inH is said to converge to a limit vector f if

lim
n→∞
‖ fn − f ‖ = 0. (4.85)

A vector-valued function ψ(t) is said to converge to the limit ψo as t → to if ψ(tn) → ψo whenever tn → to.
14Our use of the “product rule” for the inner product in evaluating the time derivative is nontrivial but is

readily obtained from the definition of the derivative in Eq. (4.86).
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then for all t, we have

ψ(0) =
∑

n

cnφn(t) (4.89)

where φn(t) is the solution to Eq. (4.84) with φn as the initial condition at t =0.

Time Evolution under a Static Hamiltonian

This superposition principle is particularly useful in analyzing systems where the Hamilto-
nian operator Ĥ is static in time. For note what happens if ψ(0) is an eigenvector of Ĥ with
some eigenvalue ε. In this case, it is easily verified that

ψ(t) = e−
i
~ εtψ(0) (4.90)

is the unique solution to the time-dependent Schrödinger equation. Moreover, since the
eigenvectors φn of Ĥ for a complete, orthonormal basis for any initial vector ψ(0), the
solution to Eq. (4.84) for a time-independent Hamiltonian Ĥ can always be written

ψ(t) =
∑

n

e−
i
~ εntφn(φn, ψ(0)) (4.91)

where εn are the corresponding eigenvalues. Thus, if the eigenvectors and eigenvalues of the
static Hamiltonian Ĥ are known, the time evolution of the system is completely determined.
For this reason the eigenvalue equation

Ĥψ = εψ, (4.92)

often referred to as the Time Independent Schrödinger Equation, is of critical importance
in evaluating the behavior of quantum systems.

In general, however, the Hamiltonian operator Ĥ may not be static in time. Although
Eq. (4.84) remains valid in this case, the solution of the equation is far more difficult and
constitutes a field of study in its own right. This topic will be explored in more detail in the
remainder of this chapter. First, however, we introduce several additional tools for dealing
with quantum ensembles.

4.2 Dynamics of Quantum Ensembles

4.2.1 The Density Matrix
At the outset, we must be clear about two types of randomness that we will encounter in our
analysis. In quantum mechanics, we often discuss the “quantum” randomness associated
with making a measurement on a system with a particular wavefunction ψ: even though we
may know the wavefunction, we cannot predict with certainty the result of measuring the
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value of an arbitrary observable A. The most we can do is to predict ensemble quantities
such as the expectation value of A – that is, the average value which would be obtained
if the measurement were repeated infinitely many times on replicas of the same system
with identical wavefunctions before the measurement. The key point here is that this type
of randomness is an inherently quantum phenomenon with uncertainty determined by the
wavefunction, even in the absence of uncertainty in the wavefunction.

In contrast, in classical statistical mechanics, we are used to thinking in terms of
randomness introduced by uncertainty in our knowledge of the state of the system before
the measurement. In classical mechanics, if we have sufficient knowledge of the state of our
system (e.g. the position and momenta of all particles), the outcome of any measurement
is completely determined already. However, when we work with large systems of many
particles, we often know only bulk properties of the system or, equivalently, probability
distributions for the properties of individual particles. For example, if we measure of the
energy of a very large number of individual particles from a gaswith temperatureT , we know
that we will get an average value of kbT . However, we do not know beforehand what the
result of any individual measurement will be. This type of randomness is fundammentally
different from the quantum uncertainty discussed above: one is caused by a simple lack of
knowledge about the system, while the other is due to an inherent limitation on the amount
of information which can be known about the system.

In bulk measurements on quantum systems, both types of uncertainty are present. Just
as for a single particle the expecation value of an observable A is obtained as

〈A〉 = 〈ψ | Â |ψ〉 , (4.93)

the expectation value of A in a system of of N particles is obtained by summing the
contribution of each individual particle as

〈A〉 =
1
N

N∑
i=1
〈ψi | Â |ψi〉 (4.94)

where ψi is the wavefunction of the ith particle.15
Note that in this case, the sum extends over the number of particles in the system. If

we instead know that the wavefunction of each particle in the system is chosen from a
discrete (but not necessarily finite) set of wavefunctions {|χ1〉 , |χ2〉 , ...}, we can write the
expectation value instead as

〈A〉 =
1
N

∞∑
i=1

ni 〈χi | Â |χi〉 . (4.95)

where ni is the number of particles with wavefunction |χi〉 (note that
∑∞

i=0 ni = N). In
another notation, we can define pi =

ni
N (so that

∑∞
i=0 pi = 1) and give the expectation value

15We are implicitly assuming here that the particles do not interact: otherwise, it would be meaningless to
speak of a wavefunction for one particle or another; only the composite wavefunction would be meaningful.
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as

〈A〉 =
∞∑

i=1
pi 〈χi | Â |χi〉 . (4.96)

In the limit that N → ∞, we can speak of these coefficients pi as the probabilities for a
randomly selected molecule to be in the |χi〉 state. It should be emphasized that there need
be nothing special about the wavefunctions |χi〉 (in particular, they need not be orthonormal
or complete); all we require is that whatever wavefunction a given particle might have be
included in the set of |χi〉’s.

Let’s suppose that we have an orthonormal basis |n〉 for our Hilbert space, so that we
can re-write the expectation value as

〈A〉 =
∞∑

i=1
pi 〈χi |

(
∞∑

n=1
|n〉 〈n|

)
Â |χi〉

=

∞∑
n=1

∞∑
i=1

pi 〈χi | n〉 〈n| Â |χi〉 (4.97)

Remember that the two inner products inside of the sum are just numbers, so we can change
the order in any way we want. Switching the order and bringing the terms which depend
only on n outside of the sum over i, we get

〈A〉 =
∞∑

n=1

∞∑
i=1

pi 〈n| Â |χi〉 〈χi | n〉

=

∞∑
n=1
〈n| Â

(
∞∑

i=1
pi |χi〉 〈χi |

)
|n〉 (4.98)

The quantity inside the parentheses is an operator: it is in fact a sum over the projection op-
erators |χi〉 〈χi | weighted by the probability of observing the corresponding state. Defining
this to be a new operator

ρ̂ ≡

∞∑
i=1

pi |χi〉 〈χi | , (4.99)

our sum becomes

〈A〉 =
∑

n

〈n| Âρ̂ |n〉 ≡ Tr{ Âρ̂} (4.100)

where in the last equality we have defined the trace of an operator as the sum of its diagonal
matrix elements.
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Effectively, all we have done here is to re-cast the expectation value of our observable
A from a form involving wavefunctions to an expression which looks like the trace of the
product of two matrices. However, the new operator ρ̂, called the density matrix for our
system, turns out to have many very convenient properties. First, since we can use ρ̂ to
determine the expectation value of arbitrary observables, it effectively serves as a complete
replacement for our usual representation of the system in terms of wavefunctions. Indeed,
this would be the case even if we had only one wavefunction for a single particle ψ to
consider. In this case the density matrix would be simply

ρ̂ = |ψ〉 〈ψ |

and expectation values are obtained simply as

〈A〉 =
∑

n

〈n| Âρ̂ |n〉 =
∑

n

〈n| Â |ψ〉 〈ψ | n〉 =
∑

n

〈ψ | n〉 〈n| Â |ψ〉 = 〈ψ | Â |ψ〉 .

Just as importantly, we will see below that, given an initial density matrix ρ̂(to) for our
system, equations of motion for the time evolution of ρ̂ are easily obtained and are directly
analgous to the Schrodinger equation for the time evolution of a wavefunction. Indeed, it
is this fact which allows us to examine the time-dependence of expectation values for the
system solely in terms of the density matrix without explicitly considering wavefunctions at
all. Finally, since calculating expectation values via the trace of an operator against ρ̂ takes
into account both the quantum statistics of the wavefunction and the ensemble statistics
of the probabilities for the occupation of various states, density matrix calculations are
tremendously useful for dealing with ensembles of (non-interacting) particles. In fact, in
many cases – particularly for systems which begin in an equilibrium of some sort – we
will find that time-dependnet calculations simplify significantly due to symmetries in the
density matrix (namely, that off-diagonal entries are zero for equilibrium systems). But
this is getting ahead of ourselves. In the following sections, we will begin by deriving
an equation – the Liouville Equation – for the time-dependence of the density matrix
analogous to the Schrödinger Equation for the wavefunction. We will then explore in
some detail different representations of the time-evolution of our system, showing which
representations may be useful in different contexts and ultimately introducing a perturbative
expansion which describes the response of a well-behaved system to a (possibly not well-
behaved) perturbation.

4.2.2 The Quantum Liouville Equation
Our first task is to find an expression for the time-evolution of the density matrix. The
central question we want to answer is: if at time to the density matrix is ρ̂o, what is the
density matrix ρ̂(t) at some later time t? The basis for our derivation is that, although we
don’t yet know anything about how ρ̂ evolves in time, we do know that the wavefunctions
χ̂i which compose it evolve according to the time-dependent Schrödinger equation (TDSE)
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i~
d
dt
|χ〉 = Ĥ |χ〉 . (4.101)

Proceeding quite informally, we can simply take the derivative of ρ̂ with respect to time
to obtain

d
dt
ρ̂ =

∞∑
j=1

d
dt

��χj
〉 〈
χj

�� = ∞∑
j=1

{[
d
dt

��χj
〉] 〈

χj
�� + ��χj

〉 [
d
dt

〈
χj

��]}
=

∞∑
j=1

{
1
i~

Ĥ
��χj

〉 〈
χj

�� − 1
i~

��χj
〉 〈
χj

�� Ĥ
}

=
1
i~

∞∑
j=1

[
Ĥ,

��χj
〉 〈
χj

��] = 1
i~

[
Ĥ, ρ̂

]
(4.102)

In the first equality, we have used a “product rule” to split up the derivative of the outer
product into two separate terms, just as for the derivative of a product of two functions f (t)
and g(t), we would use

d
dt

f (t)g(t) = g(t)
df (t)

dt
+ f (t)

dg(t)
dt

. (4.103)

In the second line, we then used the TDSE (Eq. 4.101) to replace the derivatives in each term
with the Hamiltonian acting on the projection operator from either the right or left. Finally,
in the last line we simply recognized the expression as the commutator of the Hamiltonian
with the density matrix.

This heuristic derivation has a number of subtleties which, to a reader encountering
them for the first time, may – and in fact should – be somewhat troubling. The next sections
will focus on a more detailed derivation of Eq. (4.102) and on the basic features of the
time-evolution of ρ̂ under various conditions.

The first to be addressed, perhaps, should be the very concept of taking the derivative
of an operator. Intuitively, this should seem a reasonable prospect, but formally it may be
somewhat difficult to grasp. Fortunately, the formal definition is straightforward: we say
that the derivative of an operator Â(t) is defined by examining the action of the operator on
an arbitrary vector (wavefunction) |φ〉. This is perhaps the most intuitive definition anyway:
since an operator can be completely defined in terms of its action on a sufficiently large set
of vectors (e.g. an orthonormal basis), it is natural that we should define the derivative in
terms of the action of the “derived” operator on arbitrary vectors. More precisely, given a
time-dependent operator Â(t), we say that another operator B̂(t) is the derivative of Â(t),
i.e.

d
dt

Â(t) = B̂(t) (4.104)
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if (and only if) for any time-independent vector |φ〉 in the domain of Â it is true that

d
dt

(
Â(t) |φ〉

)
= B̂(t) |φ〉 . (4.105)

In this last expression, we no longer take derivatives of operators, but instead simple
derivatives of the time-dependent vector Â(t) |φ〉, a procedure which is already well-defined
in terms of basic calculus.

This definition gives a precise meaning to the first equality in the derivation of Eq.
4.102, but leaves some important questions unanswered with regard to the second equality:
in particular, how are we justified in introducing the “chain rule” for splitting up the operator��ψ j

〉 〈
ψ j

��? The proof is again not difficult, but rests on a clear understanding of what the
terms we are using mean, particularly the braket notation symbols |ψ〉 and 〈ψ |. We often
prefer to think of these terms as denoting, respectively, a complex function ψ(®r) and its
complex conjugate ψ∗(®r). However, this is not quite correct: it is indeed true that |ψ〉
represents a complex function (or vector) ψ(®r) on a Hilbert space H consisting of all
square-integrable functions of the coordinates ®r; the bra, however, does not represent a
simple complex conjugate, but rather a linear functional Fψ : H → C which maps vectors
φ from H onto the complex numbers C via the relation

〈ψ | φ〉 = Fψφ =
∫

dτψ∗(®r)φ(®r) (4.106)

in which the notation dτ indicates integration over the entire space. With this notation clear,
it is easy to see that |ψ〉 〈ψ | represents an operator on H since, given an arbitrary vector φ
in H , it returns the vector

|ψ〉 〈ψ | φ〉 = ψ(®r)Fψφ(®r) = ψ(®r)
∫

dτψ∗(®r)φ(®r) (4.107)

which is simply the vector ψ(®r) scaled by the complex number 〈ψ | φ〉. Likewise, for an
arbitrary (time-independent) vector |φ〉 we see that we can expand the derivative of the
action of this operator on |φ〉 as

d
dt
|ψ(t)〉 〈ψ(t)| φ〉 =

d
dt

[
ψ(®r, t)

∫
dτψ∗(®r, t)φ(®r)

]
=

[
d
dt
ψ(®r, t)

] ∫
dτψ∗(®r, t)φ(®r) + ψ(®r, t)

[
d
dt

∫
dτψ∗(®r, t)φ(®r)

]
=

[
d
dt
|ψ〉

]
〈ψ | φ〉 + |ψ〉

[
d
dt
〈ψ | φ〉

]
(4.108)

The first term here is just the time-derivative of |ψ〉 multiplied by a constant, while the
second is the vector |ψ〉 multiplied by the time-derivative of the constant 〈ψ | φ〉. To give
a precise meaning to this expression in terms of the derivative of the bra functional, we
note that just as we defined the time-derivative of an operator in terms of the action of the
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“derived” operator on an arbitrary ket, the time-derivative of the linear functional 〈ψ | is
defined in terms of its action on an arbitrary ket |φ〉, In other words, we define that a linear
functional G : H → C is the derivative of another functional F : H → C if and only if

d
dt
(F |φ〉) = G |φ〉 (4.109)

for any vector |φ〉 in the domain of F. From this definition, it follows immediately that

d
dt
|ψ(t)〉 〈ψ(t)| φ〉 =

{[
d
dt
[|ψ〉

]
〈ψ | + |ψ〉

[
d
dt
〈ψ |

]}
|φ〉

or, since in Eq. 4.108 the vector |φ〉 can be any vector in H ,

d
dt
|ψ(t)〉 〈ψ(t)| =

{[
d
dt
[|ψ〉

]
〈ψ | + |ψ〉

[
d
dt
〈ψ |

]}
. (4.110)

This brings us up through the second equality of Eq. 4.102. The remaining formality
before obtaining our final expression is the second half of third equality, i.e. the statement
that

|ψ〉

[
d
dt
〈ψ |

]
= −

1
i~
|ψ〉 〈ψ | Ĥ

Again, now that we have formal definitions in place, actually evaluating the equality is
straightforward, making use of the TDSE (Eq. 4.101):

|ψ〉

[
d
dt
〈ψ |

]
= ψ(®r, t)

∫
dτφ(®r)

[
d
dt
ψ(®r, t)

]∗
= ψ(®r, t)

∫
dτφ(®r)

[
1
i~

Ĥψ(®r, t)
]∗

= −
1
i~
|ψ〉

〈(
Ĥψ

) ��� φ〉 (4.111)

Finally, we make use of the fact that Ĥ is Hermitian, i.e. Ĥ = Ĥ† where the adjoint operator
Ĥ† is defined by the property that for any two vectors |φ〉 and |ψ〉〈(

Ĥψ
) ��� φ〉 ≡ 〈

(ψ)
��� (

Ĥ†φ
) 〉

. (4.112)

It is because of this Hermitian property of Ĥ that we can write expressions like

〈ψ | Ĥ |φ〉 (4.113)
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without bothering about whether Ĥ “acts” to the right or left in the braket notation. In the
case of Eq. 4.111, this notation means that we can write without ambiguity

|ψ〉

[
d
dt
〈ψ |

]
= −

1
i~
|ψ〉 〈ψ | Ĥ |φ〉 . (4.114)

Taking everything together, we have in the end a somewhat more rigorous derivation of
Eq. 4.102 above:

d
dt
ρ̂ =

1
i~

[
Ĥ, ρ̂

]
(4.115)

This is the much-celebrated Liouville Equation (or Liouville-Von Neumann Equation),
which governs the time-evolution of the density matrix operator ρ̂. With this expression,
we can begin to think of taking time-dependent expectation values via

〈A(t)〉 = Tr{ Âρ̂(t)} (4.116)

where ρ̂(t) is the solution to Eq. 4.115. In the next several sections, we will first examine
the specific solutions to the Liouville equation which occur when Ĥ is time-independent
and then obtain a series expansion for ρ̂(t) under the action of an arbitrary time-dependent
perturbation.

4.2.3 Evolution under a Static Hamiltonian
Just as for wavefunctions, the simplest type of evolution to deal with in the Liouville equation
is when the Hamiltonian Ĥ is time-independent. In this case, it becomes convenient to
expand the density matrix in terms of an orthonormal basis of eigenfunctions of Ĥ:16

ρ̂ =

∞∑
m,n=1

|m〉 〈m| ρ̂ |n〉 〈n| ≡
∞∑

m,n=1
ρmn |m〉 〈n| . (4.117)

Taking the mn matrix element of both sides of Eq. 4.115, we obtain

16In what follows, we will treat Ĥ as though it posesses a discrete spectrum of eigenvalues. Though this
may not generally be the case, the manipulations are significantly easier in this case, and the framework is not
fundamentally changed. In the case of a Hamiltonian with a continuous spectrum of eigenvalues, terms such as
the sum over eigenvector projection operators should be replaced with integrals over the eigenvalue spectrum
with a family of spectral projection operators for Ĥ. Note also that for the Hilbert spaces we work with (square
integrable complex functions of some n-dimensional coordinate vector), although the dimensionality of the
space is infinite, it is nonetheless countable, i.e. the space always contains a countable dense set, allowing for
a countable (though infinite) orthonormal basis. For more details, see Jordan or Stone.
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d
dt
ρmn = 〈m|

d
dt
ρ̂ |n〉

=
1
i~
〈m|

[
Ĥ ρ̂ − ρ̂Ĥ

]
|n〉

=
Em − En

i~
ρmn (4.118)

This is a simple separable differential equation for the number ρmn, which gives

ρmn = exp
(

Emn

i~
(t − to)

)
ρmn(to). (4.119)

Several points areworth stopping to take note of here. First, notice that in this expression,
the diagonal elements of ρ̂(t) are constant in time, i.e. for a static Hamiltonian

ρmn(t) = ρmn(to) (4.120)

The off-diagonal elements, in contrast, oscillate in time with a frequency of Emn

~ . It is these
oscillating off-diagonal elements which give rise to the time-dependence of the expectation
values of various observables. In particular, if an operator Â commutes with Ĥ, then in
the eigenbasis of Ĥ, its matrix representation will be diagonal so that the time-dependent
expectation value becomes

〈A〉 =
∞∑

m,n=0
〈m| Â |n〉 〈n| ρ̂ |m〉 =

∞∑
m=0

Ammρmm(to) (4.121)

In this case, the expectation value is seen to be independent of time, and we say that the
observable A is a constant of the motion. In contrast, if Â does not commute with Ĥ (i.e. is
not diagonal in the Ĥ eigenbasis), we have

〈A〉 =
∞∑

m,n=0
Amnρnm =

∞∑
m,n=0

Amn exp
(

Emn

i~
(t − to)

)
ρmn(to)

=

∞∑
m=0

Ammρmm(to) +
∑
m<n

Amn exp
(

Emn

i~
(t − to)

)
ρmn(to)

+
∑
m>n

Amn exp
(

Emn

i~
(t − to)

)
ρmn(to)

=

∞∑
m=0

Ammρmm(to) + 2<
∑
m<n

Amn exp
(

Emn

i~
(t − to)

)
ρmn(to) (4.122)
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In the last step we have noted that since both Â and ρ̂(to) are Hermitian, we have Amn = A∗nm
and ρmn = ρ∗nm. If we write these matrix elements as a product of a real number with a
complex phase, i.e.

Amnρmn(to) = amneibmn (4.123)

we can re-write this expression as

〈A〉 =
∞∑

m=0
Ammρmm(to) + 2

∑
m<n

amn< exp
(
ibmn − i

Emn

~
(t − to)

)
= 〈A〉to + 2

∑
m<n

amncos (bmn − ωmn(t − to)) (4.124)

where ωmn ≡
Emn

~ . In this case, we can see that the expectation value of A will oscillate
around the to value with the oscillations consisting of a sum of (infinitely many) cosine
terms with frequency ωmn. It also becomes clear in this case that the magnitude of the off-
diagonal elements in ρmn – expressed in the eigenbasis of the Hamiltonian – will determine
the strength of the oscillations. In particular, if ρ̂(to) commutes with Ĥ (i.e. is diagonal in
the Ĥ eigenbasis), the expectation value of all observableswill be constant in time. Actually,
we could see this directly from the Liouville equation without any further manipulations:
since the time-derivative of ρ̂ is proportional to the commutator of ρ̂ with Ĥ, it is clear that
if the two commute, the density matrix (and hence all bulk observables) cannot evolve in
time. This observation suggests something that we will see in more detail shortly: for a
system in equilibrium under a time-constant Hamiltonian, the density matrix is diagonal in
the eigenbasis of the Hamiltonian.

4.2.4 The Dyson Expansion
Finally, we turn to the general case of a time-varying Hamiltonian. Although solving the
Liouville equation in general will of course depends on the particular characteristics of the
Hamiltonian of the system–and is not in general possible analytically–what we will do here
is to develop a perturbative expansion in time in which successive orders of the perturbation
are necessary for longer time intervals away from to. To do this we begin with Eq. (4.115)
and note that if we integrate17 both sides we obtain

17The reader may be getting tired of formal definitions by this point, but it is nonetheless worth pointing
out that formally the integral of an operator can be defined just as the derivative was: in terms of the action
of the “integrated” operator on an arbitrary vector. Given an operator Â(t) we say that the operator B̂(t) is the
integral of Â from to to t if for any time-independent vector |φ〉 in the domain of Â it holds that

B̂(t) |φ〉 =
∫ t

to

dt1 Â(t1) |φ〉 (4.125)

Just as above, the more abstract quantity (the operator integral) is defined in terms of the more familiar integral
of the time-dependent vector Â(t1) |φ〉.
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ρ̂ = ρ̂(to) +
1
i~

∫ t

to
dt1

[
Ĥ(t1), ρ̂(t1)

]
(4.126)

Now comes the all-important step: we substitute this expression for ρ̂ into itself to obtain a
second equation (really just a re-statement of the first) which reads

ρ̂ = ρ̂(to) +
1
i~

∫ t

to
dt1

[
Ĥ(t1), ρ̂(to) +

1
i~

∫ t1

to
dt2

[
Ĥ(t2), ρ̂(t2)

] ]
= ρ̂(to) +

1
i~

∫ t

to
dt1

[
Ĥ(t1), ρ̂(to)

]
+

1
(i~)2

∫ t

to
dt1

∫ t1

to
dt2

[
Ĥ(t1),

[
Ĥ(t2), ρ̂(t2)

] ]
Although it might not seem like much of an improvement at first, notice that in this last
expression the first two terms depend only on ρ̂(to), not on ρ̂ at any later time. Given ρ̂(to),
these terms can be evaluated easily, leaving only the last term as an unknown. Moreover,
we can repeat the process as many times as we like to obtain at N th order

ρ̂ =

N−1∑
n=0

1
(i~)n

∫ t

to
dt1

∫ t1

to
dt2...

∫ tn−1

to
dtn

[
Ĥ(t1),

[
Ĥ(t2), ..., [Ĥ(tn), ρ̂(to)

] ]
+

1
(i~)N

∫ t

to
dt1

∫ t1

to
dt2...

∫ tN−1

to
dtN

[
Ĥ(t1),

[
Ĥ(t2), ..., [Ĥ(tN ), ρ̂(tN )

] ]
. (4.127)

This form suggests already that we take a limit as N approaches infinity, and obtain a closed
form expression in terms of an infinite sum over nested commutators of Ĥ with ρ̂, i.e.

ρ̂ =

∞∑
n=0

1
(i~)n

∫ t

to
dt1

∫ t1

to
dt2...

∫ tn−1

to
dtn

[
Ĥ(t1),

[
Ĥ(t2), ..., [Ĥ(tn), ρ̂(to)

] ]
. (4.128)

It may not be obvious, however, whether such a sum should be expected to converge:
indeed, since each successive term involves a higher power of Ĥ’s , it would seem that the
convergence should depend on some “magnitude” of Ĥ. We will not consider convergence
issues in any detail here, butwewill provide at least a hint at why the sumwill often converge.
Observe that each successive term in the sum involves an integral over successively higher
dimensional volume; more importantly, each n-dimensional integral covers a successively
smaller fraction of the n-dimensional cube of side length t. For example, the first integral
covers a one-dimensional volume (i.e. length) of∫ t

0
dt1 = t (4.129)

(we have here set to = 0) The second integral covers the two-dimensional volume (i.e. area)



4.2 Dynamics of Quantum Ensembles 115

∫ t

0
dt1

∫ t1

0
dt2 =

∫ t

0
dt1t1 =

t2

2
(4.130)

More generally, we see that each added integral simply results in a higher power of t and a
(factorially) larger denominator, i.e.∫ t

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtn =

tn

n!
(4.131)

Of course we are not actually evaluating the “magnitude” of the nth term, only the integrated
n-dimensional volume. Nonetheless, the decreasing volume of the region clearly limits in
some sense the magnitude of the total integral; informally, we can think that, just as in the
Taylor expansion for the exponential function, the presence of the n! in the denominator
should provide the necessary “suppression” of higher-order terms, ultimately causing the
sum to converge. In fact, if theHamiltonianwere to commutewith itself at all times (as in the
previous subsection), this is precisely what the sum would reduce to: a simple exponential
of a single one-dimensional integral over the Hamiltonian just as we found above.

Although this is by no means a rigorous proof, for our purposes here we will take it for
granted that the sum (4.128) converges. Even so, for practical purposes, what we really want
is to employ a truncated version of the expansion as an approximation for our density matrix.
For example, we might truncate the sum at first order to obtain a linear approximation of
the time-dependent density matrix:

ρ̂(to) ≈ ρ̂(to) +
1
i~

∫ t

to
dt1

[
Ĥ, ρ̂(to)

]
. (4.132)

Whether or not such an expansion is useful, however, does depend strongly on the “mag-
nitude” of the Hamiltonian18 relative to the timescale over which we wish to follow ρ̂, just
as for a Taylor expansion of a simple exponential ex = 1 + x2 + x3

6 + ... the quality of
the approximation ex ≈ 1 + x depends strongly on the magnitude of x. In fact, for many
situations, the sum (4.128) may converge very slowly, making it of little utility by itself as
a means of approximating the time-evolution of ρ̂.

As the reader may have guessed, however, there are cases where we can re-cast Eq.
4.128 into a form which does converge quickly so that approximating the sum by only a
few terms gives a reasonable description of the dynamics of our system. One of the most
important examples of such cases is for systems in which the Hamiltonian can be separated
into two terms, one of which is time-independent (what we’ll call the static Hamiltonian,
Ĥo ) and the other of which is time-dependent (the perturbation, V̂(t)). In this case, the
quantum Liouville equation takes the form

18Note that the units work out properly here: ρ̂ is unitless, while Ĥ has units of energy. Since the integral
likewise contributes units of time, the factor of ~ in the denominator provides the necessary units (energy by
time) to make the overall term unitless.
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d
dt
ρ̂ =

1
i~

[
Ĥo, ρ̂

]
+

1
i~

[
V̂(t), ρ̂

]
. (4.133)

Notice that up until the addition of the final term on the right hand side, the expression
looks like just the evolution of ρ̂ under the static Hamiltonian Ĥo, a result of the linearity of
the commutator

[
Ĥ, ρ̂

]
. As we will explore in the next several sections, it is possible in this

case to separate out the part of the dynamics which are due to the perturbing Hamiltonian
from that part due to the static Hamiltonian (which can be solved exactly); we then use
an expansion similar to Eq. 4.128 to add the effects of the perturbation into the system
to some (generally low) order. For systems where the static portion of the Hamiltonian
is large in magnitude compared to the perturbation, it will often be a quite reasonable
approximation to truncate the expansion at first or second order, giving much simplified
descriptions of the dynamics of our system than would be obtained otherwise. In fact this is
precisely the approach adopted in spectroscopy: the static Hamiltonian Ĥo then represents
theHamiltonian of the isolated systemwhich is then perturbed by a time-dependent potential
V̂(t) in the form of an electromagnetic field. Expanding to first order in the field gives rise
to effects such as “linear” absorption, while non-linear spectroscopies correspond to higher-
order terms. In the next several sections, we develop this perturbative expansion and in then
examine its application to spectroscopy.
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4.3 The Time Evolution Operator
In order to develop this perturbative expansion simply and directly, it is convenient to
introduce a slightly different representation of time evolution than we have used so far.
To this point, we have based our analysis on a differential equation (Eq. (4.101), the
TDSE) for a time-dependent vector |ψ(t)〉. By this point, we have introduced sufficiently
sophisticated operator mechanics to be able to view the equation in a different light: in
terms of a differential equation for a time-dependent operator Û(t, to). Suppose we define
a time-dependent operator Û(t, to) by the property that

|ψ(t)〉 = Û(t, to) |ψ(to)〉 , (4.134)

where |ψ(to)〉 is an arbitrary (normalized) ket at some starting time to, and |ψ(t)〉 is the ket
to which |ψ(to)〉 would evolve, according to the Schrödinger equation, at some time t > to
(and similarly, for t < to, Û(t, to) is the operator which maps |ψ(t)〉 to |ψ(to)〉). Let us be
clear first that this is a precise definition: We know that introducing any normalized starting
vector |ψ(to)〉 as an initial condition for the Schrödinger equation is enough to determine a
unique time-dependent |ψ(t)〉 as a solution. What we do now is simply to define an operator
(depending on t and to) which maps the starting vector to the final vector.

4.3.1 Basic Properties
Notice the following properties that must be satisfied by Û(t, to):

1. Identity at t = to. When t = to , we must have Û(to, to) = 1̂ since the wave-function
has not yet undergone any time evolution.

2. Preservation of the Norm. Since a wavefunction |ψ(t)〉 evolving under a Hermitian
Hamiltonian Ĥ will always preserve its norm (i.e. 〈ψ(t)| ψ(t)〉 = 〈ψ(to)| ψ(to)〉), it
follows that the time-evolution assiciated with Û(t, to) |ψ〉 must likewise preserve the
norm of the starting vector |ψ〉.

3. Existence of an Inverse. Clearly Û(t, to) posesses an inverse operator Û−1(t, to) since
for any vector |ψ(t)〉 in the range of Û(t, to) there by definition exists a vector |ψ(to)〉
for which |ψ(t)〉 = Û(t, to) |ψ(to)〉. As a result, we can simply define an operator
Û−1(t, to) which maps all such vectors |ψ(t)〉 to the corresponding vector |ψ(to)〉.

4. Unitarity. Together with linearity, the two properties listed above (preservation of
the norm and existence of an inverse) define what is called a unitary operator. Unitary
operators are of special significance in quantum mechanics since they represent not
only time evolution (as we have seen here for Û(t, to)) but also, as we will see later,
basis set transformations and spatial rotations. We stop here to note only a few special
properties of unitary operators which will be central to our work.
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(a) Preservation of Inner Products. One special property of unitary operators is
that, because they preserve the norm, they also preserve inner products, i.e.
given two vectors |ψ〉 and |ψ〉, if we apply the unitary operator Û to each vector,
we find that

〈
Ûψ

�� Ûφ
〉
= 〈ψ | φ〉. To see this, define |χ〉 = |φ〉+ |ψ〉 and observe

that

‖Û χ‖2 =‖Ûφ‖2 + ‖Ûψ‖2 + 2<
〈
Ûψ

�� Ûφ
〉

‖ χ‖2 =‖φ‖2 + ‖ψ‖2 + 2<
〈
Ûψ

�� Ûφ
〉

Because Û is unitary, we know that ‖Û χ‖2 = ‖ χ‖2, ‖Ûφ‖2 = ‖φ‖2, and
‖Ûψ‖2 = ‖ψ‖2. Subtracting the two equations above, then, we must conclude
that <

〈
Ûψ

�� Ûφ
〉
= < 〈ψ | φ〉. Similarly, by defining |χ〉 = |φ〉 − |ψ〉, we can

show that =
〈
Ûψ

�� Ûφ
〉
= = 〈ψ | φ〉, so that in total we have as claimed〈

Ûψ
�� Ûφ

〉
= 〈ψ | φ〉 . (4.135)

(b) Equivalence of the Adjoint and Inverse. For an operator Û to be unitary, it is
required that it must posess an inverse. Furthermore, due to its norm-preserving
property, it is also true that its adjoint operator is equal to this inverse. By
definition of the adjoint, given two arbitrary vectors |ψ〉 and |φ〉, we have

〈φ| ψ〉 =
〈
Ûφ

�� Ûψ
〉
=

〈
φ
�� Û†Ûψ

〉
(4.136)

But this implies that Û†Û = 1̂ since |φ〉 and |ψ〉 can be arbitrary vectors
(in particular, |ψ〉 could be a basis vector, and clearly Û†Û |φ〉 has the same
representation in this basis as does |φ〉). As a result, we have

Û† − Û−1 =
(
Û† − Û−1

)
ÛÛ−1 =

(
Û†Û − Û−1Û

)
Û−1 = 0̂

which is equivalent to

Û† = Û−1. (4.137)

In fact (though we do not stop to prove it here), this condition is reversible: a
linear operator Û is unitary if an only if it is true that Û†Û = ÛÛ† = 1̂.

4.3.2 Operator form of the Schrödinger Equation
Now that we know some general properties, of this unitary operator Û(t, to), how do we find
specifically what it is? The answer comes, as usual, from the TDSE. Using our definition
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|ψ(t)〉 = Û(t, to) |ψ(to)〉 and denoting the time-independent starting vector |ψ(to)〉 as simply
|ψ〉 we have

i~
d
dt

(
Û(t, to) |ψ〉

)
= Ĥ

(
Û(t, to) |ψ〉

)
(4.138)

Nowwe begin again a familiar process: this equation holds for an arbitrary time-independent
starting vector |ψ〉. As a result, by our definition of the derivative of an operator, this is
entirely equivalent to the operator differential equation

i~
d
dt

Û(t, to) = ĤÛ(t, to) (4.139)

with the boundary condition Û(to, to) = 1̂. Equivalently, in integrated form, we have

Û(t, to) = 1̂ +
1
i~

∫ t

to
dt1Ĥ(t1)Û(t1, to). (4.140)

As usual, both the derivative and integral should be thought of in terms of their action on
an arbitrary time-independent starting vector |ψ〉.

Not surprisingly, while Eq. (4.139) is easy to write down, it is usually quite difficult to
solve. Just as in the case of the wavefunction version of the TDSE, however, simple solutions
do exist in the special case where the Hamiltonian Ĥ is either constant or commutes with
itself at all times. For example, when Ĥ is static, Eq. (4.139) results in the exponential
operator

Û(t, to) = e
Ĥt
i~ (4.141)

defined in terms of either its operation on an arbitrary eigenvector |n〉 of Ĥ

e
Ĥt
i~ |n〉 = e

Ent
i~ |n〉 (4.142)

or via a series expansion19

e
Ĥt
i~ =

∞∑
n=0

( t
i~

)n Ĥn

n!
. (4.143)

19 Although we will not stop to prove it here, both definitions are equivalent. In general, one should be
careful to consider convergence when defining an operator expansion in this manner; in the present case,
convergence is quite robust thanks to the factorially increasing denominator. As might be expected by this
point, convergence of an operator series is defined in terms of the action of the truncated sum on an arbitrary
vector. We say that the infinite operator sum

∞∑
n=0

Ân (4.144)

converges to a definite operator Â if for an arbitrary vector |ψ〉 and an arbitrary positive number ε there exists
an integer M such that for N > M
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Note that by either definition Ĥ commutes with the exponential e
Ĥt
i~ . Since an arbitrary

vector can be decomposed into an expansion over the eigenvector basis |n〉, to take the
derivative of the exponential operator, we can examine the action of the operator on its
eigenvector basis:

d
dt

(
e

Ĥt
i~ |n〉

)
=

d
dt

(
e

Ent
i~ |n〉

)
=

En

i~
e

Ent
i~ |n〉 . (4.146)

For an arbitrary vector |ψ〉 =
∑

n cn |n〉, we have then

d
dt

(
e

Ĥt
i~ |ψ〉

)
=

d
dt

(∑
n

cne
Ĥt
i~ |n〉

)
=

∑
n

cn
En

i~
e

Ent
i~ |n〉

∑
n

cn
Ĥ
i~

e
Ĥt
i~ |n〉

=
Ĥ
i~

e
Ĥt
i~

(∑
n

cn |n〉

)
=

Ĥ
i~

e
Ĥt
i~ |ψ〉 (4.147)

or in other words

d
dt

e
Ĥt
i~ =

Ĥ
i~

e
Ĥt
i~ (4.148)

which is clearly a solution to the operator TDSE Eq. (4.139).
A similar result is obtained for the special case considered earlier where Ĥ is not time-

constant, but has the special property that
[
Ĥ(t2), Ĥ(t1)

]
= 0̂ for all t1 and t2. Just as before,

we note that in this case, since Ĥ commutes with itself at all times, we can always choose
a time-independent basis which is composed of eigenvectors of Ĥ(t) at all times, although
the eigenvalues En(t) may vary. Consider the operator

Û(t, to) = e
1
i~

∫ t

to
dt1Ĥ(t1) (4.149)

where again we define the operator in terms of its action on the static eigenbasis of Ĥ(t) via

e
1
i~

∫ t

to
dt1Ĥ(t1) |n〉 = e

1
i~

∫ t

to
dt1Ên(t1) |n〉 . (4.150)

Just as above, a short calculation verifies that taking the derivative of the operator applied
to an eigenvector |n〉 returns simply En(t)

i~ e
1
i~

∫ t

to
dt1Ên(t1), and that as a result

d
dt

e
1
i~

∫ t

to
dt1Ĥ(t1) =

Ĥ
i~

e
1
i~

∫ t

to
dt1Ĥ(t1) (4.151)

 N∑
n=0

Ânψ − Âψ

 < ε ‖ψ‖. (4.145)
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As usual, time-evolution under an arbitrary time-varying Hamiltonian is often very
difficult (if not impossible) to solve analytically. However, just as we earlier obtained a
series expansion for the density matrix under an arbitrary time-dependent Hamiltonian, we
can obtain a series expansion for Û(t, to) by repeatedly plugging Eq. (4.140) into itself to
obtain the Dyson series expansion for the time-evolution operator

Û(t, to) =
∑

n

(
1
i~

)n ∫ t

to
dt1

∫ t1

to
dt2...

∫ tn−1

to
dtnĤ(t1)Ĥ(t2)...Ĥ(tn). (4.152)

Just as in the case of the density matrix expansion described above, the convergence of this
series is not necessarily expected to be quick, making it of limited utility for a truncated
expansion. However, with the material just developed, we are finally ready to introduce a
perturbative expansion which in many cases will converge quickly (just as discussed earlier
in the context of the time-dependent density matrix), making a truncation of the sum after
only a few terms a viable option. In the next section we develop this expansion for the
time-evolution operator as an example and in the following section apply it to the density
matrix representation.

4.3.3 Interaction Representation
The perturbative expansion we will develop here relies on a division of the system Hamil-
tonian into two terms: a static (time-independent) Hamiltonian Ĥo and a time-dependent
(arbitrary) perturbation V̂(t) which may not bear any special relationship with Ĥo (in par-
ticular the two need not commute). Our approach will be to separate out the time-evolution
of the system due to Ĥo (which can be solved exactly) from that due to V̂(t) (to which we
will apply a series expansion). In this way, we fully account for the effects of the static
Hamiltonian Ĥo on the system, while approximately accounting for the effects of the more
difficult V̂(t).

The first step in this process is to introduce a unitary transformation on our Hilbert
space. Mathematically, the meaning here is quite simple: a unitary transformation U is a
one-to-one mapping U : H → H from a Hilbert space H into itself which preserves
inner products. Formally, U is a mapping which associates every vector |ψ〉 in H with
another vector U (|ψ〉) in H such that

1. If |φ〉 , |ψ〉, then U (|φ〉) , U (|ψ〉), i.e. the mapping is injective (distinct elements
|ψ〉 have distinct images under U ).

2. The set of image vectors {U (|ψ〉)} is equal to H , i.e. the mapping is surjective or
onto: every element in H is the image of another element of H under U . Note that
together with the previous requirement, this implies that the mapping U is bijective
or one-to-one, i.e. both injective and surjective. In short, this property says that under
U each vector in H is mapped to exactly one unique vector (also in H ), and that no
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two distinct vectors are mapped to the same image vector. This likewise implies the
existence of an inverse mapping U −1, which is also bijective, defined by the property
that

U −1 (U (|ψ〉)) = |ψ〉 . (4.153)

3. For any two elements |φ〉 and |ψ〉 in H , it holds that 〈U (ψ)| U (φ)〉 = 〈ψ | φ〉, i.e.
the inner product between two vectors is the same as the inner product between their
image vectors.

From these properties and our preceding discussion, it should be immediately clear20 that
a unitary operator Û on a Hilbert space H defines a unitary transformation U : H →H
and vice-versa; the two are completely equivalent, and in the future we will not distinguish
between them unless explicitly necessary. Actually, this is simply an example of the fact
that any linear operator on a Hilbert space H corresponds by definition to a particular type
of mapping (or transformation) of the vectors of some subset of H into another subset of
H , although the more general term “transformation” may refer to other types of mappings
(e.g. non-linear mappings within a Hilbert space or mappings between two different Hilbert
spaces).

Unitary transformations are important in physics for several reasons. Perhaps most
fundamentally, it should be clear by now that physical time-evolution in quantummechanics
corresponds mathematically to a simple unitary transformation on the system Hilbert space
H . On a more practical note, unitary transformations are important in that they correspond
to changes of representation: because a unitary transformation is bijective and conserves
inner products, it is possible to interconvert reversibly from one representation to another
without losing any information. In physics, this is especially helpful because it is often
much more convenient to do a calculation in one representation than in another.

This is exactly what we are doing in converting to the so-called “interaction repre-
sentation”. The interaction representation is useful when we have a Hamiltonian of the
form

Ĥ(t) = Ĥo + V̂(t) (4.154)

where the static Hamiltonian is (relatively) tractable to deal with, but the “perturbation” V̂(t)
is difficult. Let the time-evolution operator corresponding to the total Hamiltonian Ĥ(t)
be denoted Û(t, to) and consider the unitary transformation Uo(t, to) defined by the unitary
operator Û−1

o = e−
Ĥo
i~ (t−to) which corresponds to the inverse of the time-evolution operator

specified by Ĥo in the absence of V̂(t). Given an arbitrary vector |ψ(t)〉 = Û(t, to) |ψ(to)〉 we

20Actually, a subtle difference has been glossed over: we have defined a unitary operator to be necessarily
linear, while we have not made any such requirement on the transformation U . In fact, the linearity of the
transformationU follows from the three properties already listed, so that the correspondence is unambiguous.
(See M. H. Stone, pg. 76).
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assign an image vector |ψ(t)〉I = Û−1
o (t, to) |ψ(t)〉 = Û−1

o (t, to)Û(t, to) |ψ(to)〉. Mathemati-
cally this simply defines (at any time t) a unitary transformation on H , while physically
it corresponds to the “backwards” time-evolution which would occur in the absence of the
perturbation V̂(t). Because the mapping is unitary, if we know the state of the system in the
transformed (interaction) representation, we likewise know the state in the untransformed
“Schrödinger”) representation.

For this representation to be useful, we need to know how the vector |ψ(t)〉I evolves in
time. Using the definition in terms of |ψ(t)〉 and taking the time-derivative of |ψ(t)〉I gives

d
dt
|ψ(t)〉I =

d
dt

(
Û−1

o (t, to) |ψ(t)〉
)

=
d
dt

(
Û−1

o (t, to)
)

Û(t, to) |ψ(to)〉 + Û−1
o (t, to)

d
dt

(
Û(t, to)

)
|ψ(to)〉 (4.155)

Recall that Ûo(t, to) satisfies the TDSE under the static Hamiltonian Ĥo, i.e. d
dt Ûo(t, to) =

1
i~ ĤoÛo(t, to). To calculate the time-derivative of the adjoint operator Ûo(t, to) note that21

d
dt

Û−1
o (t, to) =

d
dt

Û†o (t, to) =
(

d
dt

Uo(t, to)
)†

=

(
1
i~

ĤoÛo(t, to)
)†
= −

1
i~

Û†o (t, to)Ĥ
†
o

= −
1
i~

Û−1
o (t, to)Ĥo

which gives

21 In the derivation, we have made use of a few properties which have not been explicitly pointed out yet.
First, note that for a linear operator Â(t) we have

d
dt

Â†(t) =
(

d
dt

Â(t)
)†

(4.156)

since by definition of the adjoint for orthonormal basis vectors |m〉 and |n〉

〈m|
d
dt

Â†(t) |n〉 =
d
dt
〈m| Â†(t) |n〉 =

d
dt
〈n| Â(t) |m〉∗

= 〈n|
d
dt

Â(t) |m〉∗ = 〈m|
(

d
dt

Â(t)
)†
|n〉 , (4.157)

where we have used the fact that

〈m| Â |n〉 =
〈
Â†m

�� n
〉
= 〈n| Â† |m〉∗ . (4.158)

Second, recall that for two operators Â and B̂ the adjoint of the product operator is



124 Chapter 4. Quantum Dynamics

d
dt
|ψ(t)〉I = −

1
i~

Û−1
o (t, to)ĤoÛ(t, to) |ψ(to)〉 +

1
i~

Û−1
o (t, to)Ĥ(t)Û(t, to) |ψ(to)〉

= −
1
i~

Û−1
o (t, to)ĤoÛ(t, to) |ψ(to)〉 +

1
i~

Û−1
o (t, to)

[
Ĥo + V̂(t)

]
Û(t, to) |ψ(to)〉

=
1
i~

Û−1
o (t, to)V̂(t)Û(t, to) |ψ(to)〉

=
1
i~

Û−1
o (t, to)V̂(t)Ûo(t, to)Û−1

o (t, to)Û(t, to) |ψ(to)〉

=
1
i~

[
Û−1

o (t, to)V̂(t)Ûo(t, to)
]
|ψ(to)〉I (4.162)

Notice now that the final equation has exactly the form of the Schrödinger equation with
a new Hamiltonian Û−1

o (t, to)V̂(t)Ûo(t, to) driving the time-evolution. In other words if we
define an “interaction representation” potential V̂I(t) as

V̂I(t, to) ≡ Û−1
o V̂(t)Ûo(t, to) (4.163)

the time-evolution equation for |ψ(t)〉I becomes the so-called “InteractionPicture” Schrödinger
equation

d
dt
|ψ(t)〉I =

1
i~

V̂I(t) |ψ(t)〉I . (4.164)

In short, by introducing the unitary transformation Ûo(t, to)−1 on the vectors of the systemand
replacing the perturbing potential V̂(t)with a “transformed” operator V̂I(t), we have derived
a “transformed” TDSE in the new representation which likewise defines the dynamics
of our system. Remember that if we solve the time-evolution of this new TDSE to obtain
|ψ(t)〉I , we can at any time perform the inverse transformation Ûo(t, to) to obtain the original
Schrödinger representation vector |ψ(t)〉.

(
ÂB̂

)†
= B̂† Â† (4.159)

because for arbitrary vectors |ψ〉 and |φ〉 we have

〈
ψ
��� (

ÂB̂
)
φ
〉
=

〈
Â†ψ

�� B̂φ
〉
=

〈(
B̂† Â†

)
ψ
��� φ〉 .

Finally, for a complex number λ and a linear operator Â note that(
λ Â

)†
= λ∗ Â† (4.160)

since for arbitrary vectors |φ〉 and |ψ〉

〈ψ |
(
λ Â

)†
|φ〉 =

〈
λ Âψ

�� φ〉 = λ∗ 〈 Âψ
�� φ〉 = 〈ψ | (λ∗ Â†) |φ〉 . (4.161)
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In deriving Eq. (4.164) we have made the conversion V̂(t) → V̂I(t) as essentially an
“ansatz” simply because we saw that we would obtain a Schrödinger-like equation if we
did. In fact there is a deeper reason for making the definition V̂I(t) = Û−1

o (t, to)V̂(t)Ûo(t, to).
In our earlier discussion of unitary transformations, we specified a mapping of vectors
onto other vectors, but did not comment on the effect of the transformation on operators. In
principle, of course, we need not do anything to the operators: since a unitary transformation
maps vectors within the same Hilbert space, we are free to operate on transformed vectors
with un-transformed operators. For example, the operation

Ĥ(t) |ψ(t)〉I = Ĥ(t)Û−1
o (t, to) |ψ(t)〉

is perfectly well defined. However, it should be clear that the action of the un-transformed
operators on the transformed vectors will be quite different than the action of un-transformed
operators on the original un-transformed vectors, i.e. for an arbitrary (possibly time-
depenent) linear operator Â(t) and vector |ψ〉, the vector Â(t) |ψ(t, to)〉I need not bear any
particular relation to the vector Â(t) |ψ(t, to)〉. This is why, for example, it is not valid to
simply re-write the Schrödinger equation with the transformed interaction representation
vectors and the un-transformed operators:

d
dt
|ψ(t)〉I ,

1
i~

Ĥ(t) |ψ(t)〉I

On the other hand, if we transform the set of operators as well according to the relation

ÂI(t) ≡ Û−1
o (t, to)Â(t)Ûo(t, to), (4.165)

we find that we can transform operator equations back and forth between the two represen-
tations completely reversibly. Consider a generic operator-vector equation

Â |ψ〉 = B̂ |φ〉

Applying a unitary transformation T̂ to each side of the expression preserves the equality
(each expression is a vector, so the transformation is well-defined), so we can write

T̂ Â |ψ〉 = T̂ B̂ |φ〉 .

This equation is true, but it is not especially useful since what we really want is an equality
in terms of the transformed vectors |ψ〉T = T̂ |ψ〉 and |φ〉T = T̂ |φ〉. To get the equation in
this form, we insert between the operators and the vector they act on the identity operator
1̂ = T̂−1T̂ :

T̂ ÂT̂−1T̂ |ψ〉 = T̂ B̂T̂−1T̂ |φ〉

→ ÂT |ψ〉T = B̂T |φ〉T
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In case we have multiple operators on one side, we simply insert the identity between
each operator as well. For example, suppose that Â = ĈD̂; then the transformed operator
expression is

ÂT = T̂
(
ĈD̂

)
T̂−1

= T̂ĈT̂T̂−1D̂T̂−1

= ĈT D̂T .

The point here is that given an equality in one representation, we can transform it directly
to another representation by transforming vectors according to the definition

|ψ〉T = T̂ |ψ〉 (4.166)
and the operators according to the definition

ÂT = T̂ ÂT̂−1. (4.167)
As an example, notice that we can re-derive the interaction representation TDSE in exactly
this manner. Starting with the Schrödinger equation

d
dt
|ψ(t)〉 =

1
i~

Ĥ(t) |ψ(t)〉 ,

we apply Ûo(t, to)−1 and insert the identity operator Ûo(t, to)Ûo(t, to)−1 between each pair of
terms to obtain

Ûo(t, to)−1 d
dt

(
Ûo(t, to)Ûo(t, to)−1 |ψ(t)〉

)
=

1
i~

Ûo(t, to)−1Ĥ(t)Ûo(t, to)Ûo(t, to)−1 |ψ(t)〉

→ Ûo(t, to)−1 d
dt

(
Ûo(t, to) |ψ(t)〉I

)
=

1
i~

ĤI(t) |ψ(t)〉I .

Splitting up the derivative on the left-hand side using the product rule (again generalized
for operator-vector “products” as earlier) and on the right distributing the definition Ĥ =
Ĥo + V̂(t), we obtain

Ûo(t, to)−1Ûo(t, to)
d
dt
|ψ(t)〉I + Ûo(t, to)−1

(
d
dt

Ûo(t, to)
)
|ψ(t)〉I =

1
i~

( [
Ĥo(t)

]
I + V̂I(t)

)
|ψ(t)〉I

→
d
dt
|ψ(t)〉I −

1
i~

Ûo(t, to)−1Ĥo(t)Ûo(t, to) |ψ(t)〉I =
1
i~

( [
Ĥo(t)

]
I + V̂I(t)

)
|ψ(t)〉I

→
d
dt
|ψ(t)〉I =

1
i~

V̂I(t) |ψ(t)〉I .

Note in particular that this ability to transform operator expressions from one repre-
sentation to another means that we can calculate expectation values in any frame just by
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replacing all operators and vectors with their transformed counter-parts. For example, we
have

〈φ| Â |ψ〉 = 〈φ| Ûo(t, to)Û−1
o (t, to)ÂÛo(t, to)Û−1

o (t, to) |ψ〉 = I 〈φ| ÂI |ψ〉I . (4.168)

This further highlights the equivalence of dynamics in any transformation frame: as long
as we know how to convert back and forth from one representation to another, which
representation we use is entirely at our discretion.

Before moving on, it is worth pausing to note that nothing in the transformation to the
interaction representation required that Ĥo be static in time. Everything developed above
could be just as easily applied to an arbitrary Hamiltonian Ĥ = Ĥ1(t) + Ĥ2(t) where Ĥ1(t)
and Ĥ2(t) are arbitrary Hermitian operators (in particular, they need not commute with
each other or with themselves at different times). The reason for introducing the interaction
representation under a static Hamiltonian is that this is where the approach is most useful
since in this case we can obtain an analytical expression for Ûo(t, to). Of course we have
already shown that an anlytical expression (in terms of the eigenstates of Ĥo) would also
exist for Ûo(t, to) in the case that Ĥo(t) is time-dependent but commutes with itself at all
times. In this case also transformation to the interaction representation will prove useful
(and follows exactly the same procedure as used above) as we will see later on in the context
of the classical bath.

4.3.4 Perturbative Expansion
We’ve shown in the last section that introducing a unitary transformation to the interaction
representation allows us to view the time-evolution of our system according to the trans-
formed Schrödinger equation Eq. (4.164). The power of this approach is that the interaction
representation vectors |ψ(t)〉I already contains the time-evolution due to the static Hamil-
tonian Ĥo. For example, if the perturbtation V̂(t) were zero, Eq. (4.164) would tell us that
|ψ(t)〉I would be stationary in time. So all time-evolution in the interaction representation
is entirely due to the perturbation V̂(t). In cases where the “magnitude” of V̂(t) is small
compared with the time-scale over which we observe the system,22 we similarly expect that
|ψ(t)〉 ≈ |ψ(t)〉I since the perturbing potential V̂(t) only modifies the dynamics slightly. It is
in exactly this circumstance where the operator expansion demonstrated earlier for Û(t, to)
becomes useful. Define an interaction representation time-evolution operator ŨI(t, to) via23

|ψ(t)〉I = ŨI(t, to) |ψ(to)〉I = ŨI(t, to) |ψ(to)〉 , (4.169)
i.e. ŨI(t, to) is the solution to the interaction picture Schrödinger equation Eq. (4.164)
recast as an operator differential equation (note that we have made use of the fact that

23In particular, we want the magnitude of the integral of V̂(t) (which has units of energy · time) to be small
compared to Planck’s constant ~ which appears in the denominator of each expansion term.

23The reason for not denoting this as ÛI (t, to) is that it is not the transformed operator
Û−1
o (t, to)Û(t, to)Ûo(t, to) which would be suggested by this notation.
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|ψ(to)〉I = |ψ(to)〉 since Ûo(to, to) = 1̂). Note that the full dynamics of the system (in the
Schrödinger representation) are then given by

Û(t, to) = Ûo(t, to)ŨI(t, to) (4.170)

since

|ψ(t)〉 = Û(t, to) |ψ(to)〉 = Ûo(t, to) |ψ(t)〉I = Ûo(t, to)ŨI(t, to) |ψ(to)〉I
= Ûo(t, to)ŨI(t, to) |ψ(to)〉 . (4.171)

We can now directly apply the Dyson expansion Eq. (4.152) to the interaction repre-
sentation TDSE (Eq. (4.164))to obtain

ŨI(t, to) =
∑

n

(
1
i~

)n ∫ t

to
dt1

∫ t1

to
dt2...

∫ tn−1

to
dtnV̂I(t1)V̂I(t2)...V̂I(tn). (4.172)

What is different about our use of the expansion here compared to earlier is that in this case
we are working under the assumption that V̂I(t) is in some sense a “weak” perturbation. As
a result, we can often truncate the expansion after only a few terms. For example, we might
introduce a first order approximation to the true dynamics via

Ũ(1)I (t, to) = 1̂ +
1
i~

∫ t

to
dt1V̂I(t1) (4.173)

The total dynamics of the system in the Schrödinger picture are then approximated (to an
accuracy depending on the “strength” of V̂(t)) by

Û(t, to) ≈ Ûo(t, to)Ũ
(1)
I (t, to)

= Ûo(t, to) +
1
i~

Ûo(t, to)
∫ t

to
dt1V̂I(t1).

It is exactly this type of approximation which we will introduce to study spectroscopy.
Usually we will consider a system with a stationary Hamiltonian Ĥo which will then be
perturbed by the electromagnetic field V̂(t) of our laser pulse, white light, microwave beam,
etc. Linear response of the system refers to the evolution of the system due to the term
on the far right of the equation above (which is linear in the perturbation). Higher-order
terms in the Dyson expansion give rise to non-linear response, which become important as
the magnitude of the perturbation (i.e. intensity of the electro-magnetic field) increases.
Before moving on to detailed spectroscopic considerations, we return to the density matrix
formalism to show how the perturbative expansion can be applied to the time-propagation
of ρ̂(t).
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4.3.5 Density Matrices Revisited
With the matrial just developed, we are ready to return to the density matrix representation
introduced at the start of our discussion. One advantage of casting quantum dynamics in
terms of time-evolution operators is that we can simply write down an expression for the
time-dependent density matrix by inspection. Since we know that |ψ(t)〉 = Û(t, to) and
ρ̂(t) =

∑
i pi |χ(t)〉 〈χ(t)| we obtain immediately

ρ̂(t) =
∑

i

piÛ(t, to) |χ(to)〉 〈χ(to)| Û†(t, to)

= Û(t, to)ρ̂(to)Û†(t, to). (4.174)

For example, if the system is evolving under a static Hamiltonian Ĥo, we have Û(t, to) =
exp{ Ĥo(t−to)

i~ } and

ρ̂(t) = exp
{

Ĥo(t − to)
i~

}
ρ̂(to)exp

{
−

Ĥo(t − to)
i~

}
. (4.175)

Taking matrix elements in the eigenbasis of Ĥo returns

ρ̂mn(t) = e
Em
i~ (t−to) ρ̂mn(to)e−

En
i~ (t−to) = e

Em−En
i~ (t−to) ρ̂mn(to) (4.176)

just as obtained earlier from the quantum Liouville equation. Moreover, we can perform a
transformation of the system dynamics to the Schrödinger representation exactly as above,
applying the usual operator definition ρ̂I(t) = Û−1

o (t, to)ρ(t)Ûo(t, to) to obtain a transformed
Liouville equation

Û−1
o (t, to)

d
dt

(
Ûo(t, to)Û−1

o (t, to)ρ̂(t)Ûo(t, to)
)
=

1
i~

Û−1
o (t, to)

[
Ĥ, ρ̂

]
Ûo(t, to)

→Û−1
o (t, to)

d
dt

(
Ûo(t, to)ρ̂I(t)

)
=

1
i~

[
ĤI(t), ρ̂I(t)

]
→Û−1

o (t, to)
(

1
i~

Ĥo(t)Ûo(t, to)ρ̂I(t) + Ûo(t, to)
d
dt
ρ̂I(t)

)
=

1
i~

[
ĤI(t), ρ̂I(t)

]
→

d
dt
ρ̂I(t) =

1
i~

[
V̂I(t), ρ̂I(t)

]
and similarly a perturbative expansion

ρ̂I(t) =
∞∑

n=0

1
(i~)n

∫ t

to
dt1

∫ t1

to
dt2...

∫ tn−1

to
dtn

[
V̂I(t1),

[
V̂I(t2), ...,

[
V̂I(tn), ρ̂(to)

] ] ]
. (4.177)

It is this perturbative expansion which we will largely make use of in our discussion of
spectroscopy. Truncation of the sum at nth order will be referred to as nth order effects;
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for low field (e.g. light) intensities, linear response is often sufficient to consider, while for
higher order fields (e.g. produced by high-intensity or pulsed lasers) higher order terms
will be important.
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