In [32]:

Q1

Give numerical values to 3 decimal places (with units, if relevant) for the following physical and mathematical constants:

  1. $\pi$
  2. $e$
  3. $N_\text{A}$
  4. $R$
  5. $k_\text{B}$
  6. $c$
  7. $h$
  8. $\hbar$

  1. $\pi$ $\approx$ 3.14159265
  2. $e$ $\approx$ 2.718281828
  3. $N_\text{A}$ $\approx$ 6.626$\cdot 10^{-34}$ mol$^{-1}$
  4. $R$ $\approx$ 8.3145 J/(mol$\cdot$K)
  5. $k_\text{B}$ $\approx$ 1.3806503$\cdot 10^{-23}$ J/K
  6. $c$ $\approx$ 2.9979$\cdot10^{8}$ m/s
  7. $h$ $\approx$ 6.626068$\cdot10^{-34}$ J$\cdot$s
  8. $\hbar$ $\approx$ 1.054571$\cdot10^{-34}$ J$\cdot$s

Q2

Give an order of magnitude estimate for the following physical constants:

  1. $e_o$ (fundamental charge)
  2. $m_\text{P}$ (proton mass)
  3. Atomic Mass Unit
  4. $m_\text{e}$ (electron mass)

  1. $e_o$ (fundamental charge) $\approx 10^{-19}$ C $(1.602\cdot 10^{-19}$ C)
  2. $m_\text{P}$ (proton mass) $\approx 10^{-27}$ kg $(1.6726 \cdot 10^{-27}$ kg).
  3. Atomic Mass Unit $\approx 10^{-27}$ kg. (1.6605$\cdot10^{-27}$ kg). Note that, in grams, this is just N$_\text{A}^{-1}$.
  4. $m_\text{e}$ (electron mass) $\approx 10^{-30}$ kg (9.109$\cdot 10^{-31}$ kg)

Q3

Complete the square: $$f(x) = a x^2 + b x + c ,$$ i.e., write this expression in the form $f(x) = \alpha \left( x + \beta \right)^2 + \gamma$ .

First divide through by $a$ so that the $x^2$ term has no coefficient:$$\frac{f(x)}{a} = x^2 + \frac{b}{a} + \frac{c}{a}$$Now add and subtract $\frac{b^2}{4 a^2}$ (i.e., the square of one-half the second term):$$\frac{f(x)}{a} = \left( x^2 + \frac{b}{a} + \frac{b^2}{4a^2} \right) - \frac{b^2}{4a^2} + \frac{c}{a}$$The term in parentheses can now be rewritten as a square$$\frac{f(x)}{a} = \left( x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}$$so that $$f(x) = a \left( x + \frac{b}{2a} \right)^2 + \left( c - \frac{b^2}{4a} \right) .$$Thus the problem is solved with \begin{align*} \alpha &= a\\ \beta &= \frac{b}{2a} \\ \gamma &= c - \frac{b^2}{4a} .\end{align*}

Q4

Calculate the eigenvalues of the matrix$$\begin{bmatrix} -\frac{\Delta}{2} & V \\ V & \frac{\Delta}{2} .\end{bmatrix} $$

The eigenvalues are the roots of the determinant $$ 0 = \left | \begin{matrix} -\frac{\Delta}{2} -\lambda & V \\ V & \frac{\Delta}{2} -\lambda \end{matrix} \right | = \lambda^2 - \frac{\Delta^2}{4} - V^2 ,$$which are obtained from the quadratic formula as $$\lambda_{\pm} = \pm \frac{1}{2} \sqrt{\Delta^2 + 4V^2} . $$

Q5

Calculate (assuming you know the eigenvalues) the eigenvectors of the matrix$$\begin{bmatrix} -\frac{\Delta}{2} & V \\ V & \frac{\Delta}{2} .\end{bmatrix} $$

Eigenvectors are defined by the criterion that$$\begin{bmatrix} -\frac{\Delta}{2} -\lambda_\pm & V \\ V & \frac{\Delta}{2} -\lambda_\pm \end{bmatrix} \begin{bmatrix} u_1^{(\pm)} \\ u_2^{(\pm)} \end{bmatrix} = 0 .$$This matrix equation is really two separate equations, one obtained from the top row and one from the bottom row of the matrix. Only one of these is needed to calculate eigenvector coefficients. Using only the top row, we get the condition$$- \left( \frac{\Delta}{2} + \lambda_{\pm} \right) u_1^{(\pm)} + V u_2^{(\pm)} = 0$$or$$u_2^{(\pm)} = \frac{\lambda_{\pm} + \frac{\Delta}{2}}{V} u_1^{(\pm)} . $$If we define$$\phi_{\pm} = \text{atan} \left( \frac{\lambda_{\pm} + \frac{\Delta}{2}}{V} \right) $$then since$$ \sin \phi_{\pm} = \tan \phi_{\pm} \cos \phi_\pm,$$the eigenvalue condition is satisfied by setting$$ u_{1}^{(\pm)} = \cos \phi_{\pm}$$$$ u_{2}^{(\pm)} = \sin \phi_{\pm}.$$

Q6

Evaluate the following derivatives:

  1. $\frac{d}{dx} x^n$
  2. $\frac{d}{dx} \ln x$
  3. $\frac{d}{dx} e^{ax}$
  4. $\frac{d}{dx} \cos \left( a x \right)$
  5. $\frac{d}{dx} \sin \left( a x \right) $

  1. $\frac{d}{dx} x^n = n x^{n-1}$
  2. $\frac{d}{dx} \ln x = \frac{1}{x}$
  3. $\frac{d}{dx} e^{ax} = a e^{ax}$
  4. $\frac{d}{dx} \cos \left( a x \right) = - a \sin \left( a x \right) $
  5. $\frac{d}{dx} \sin \left( a x \right) = a \cos \left( a x \right)$

Q7

Evaluate the integral$$\int_0^\infty dt \; e^{-\gamma t}$$

Since $\frac{d e^{-\gamma t}}{dt} = - \gamma e^{-\gamma t}$, $$\int_0^\infty dt \; e^{-\gamma t} = -\left .\frac{e^{-\gamma t}}{\gamma} \right|_{0}^\infty = \frac{1}{\gamma}.$$

Q8

Evaluate the integral$$\int_0^\infty dt \; e^{-\gamma t} t^n .$$

This is a perfect case to use integration by parts. First, we write the integral in the form $\int u dv$ by defining$$ u = t^n \leftrightarrow du = n t^{n-1} dt$$$$ dv = e^{-\gamma t} dt \leftrightarrow v = -\frac{e^{-\gamma t}}{\gamma} . $$Then using the integration-by-parts formula$$ \int u dv = uv - \int v du,$$we get$$\int_0^\infty dt \; e^{-\gamma t} t^n = - \left . \frac{t^n e^{-\gamma t}}{\gamma} \right|_0^\infty + \frac{n}{\gamma} \int_0^\infty dt \; e^{-\gamma t} t^{n-1} .$$The first of these terms vanishes, while the second is just $\frac{n}{\gamma}$ times the original integral with $n$ replaced with $n-1$. Repeating this process $n-1$ times, we obtain$$\int_0^\infty dt \; e^{-\gamma t} t^n = \frac{n\cdot (n-1)\cdot ... \cdot 3\cdot 2}{\gamma^{n-1}} \int_0^\infty dt \; e^{-\gamma t} t^0 = \frac{n!}{\gamma^n}.$$When $n$ is not an integer, and $\gamma = 1$, this integral defines the Gamma function. (But note that $\Gamma(x)$ is defined so that $\Gamma(n) = (n-1)!$.)

Q9

Evaluate the integral$$\int_{0}^\infty dt \; e^{i \omega t} e^{-\gamma t}$$

\begin{align} \int_{0}^\infty dt \; e^{i \omega t} e^{-\gamma t} = \int_{0}^\infty dt \; e^{ \left( i \omega - \gamma \right) t} = \frac{1}{i \omega - \gamma}\end{align}

Q10

Evaluate the integral$$\int_{-\infty}^\infty dt \; e^{i \omega t} e^{-\gamma |t|}$$

Splitting up the integral as \begin{align} \int_{-\infty}^\infty dt \; e^{i \omega t} e^{-\gamma |t|} &= \int_{-\infty}^0 dt \; e^{i \omega t} e^{+\gamma t} + \int_{0}^\infty dt \; e^{i \omega t} e^{-\gamma t} \nonumber \\ &= \int_{0}^\infty dt \; e^{-i \omega t} e^{-\gamma t} + \int_{0}^\infty dt \; e^{i \omega t} e^{-\gamma t}\end{align}casts this as a sum of two integrals with the same form as in the last question. Thus$$\int_{-\infty}^\infty dt \; e^{i \omega t} e^{-\gamma |t|} = \frac{1}{-i\omega + \gamma} + \frac{1}{i \omega + \gamma } = \frac{2 \gamma}{\omega^2 + \gamma^2 } . $$

Q11

Evaluate the integral$$\int_{-\infty}^\infty e^{-\frac{(x-x_o)^2}{2\sigma^2}} dx $$

As a first step: memorize the solution! (A good PChemist will need to evaluate integrals like this quite often.) The answer is$$\int_{-\infty}^\infty e^{-\frac{(x-x_o)^2}{2\sigma^2}} dx = \sqrt{2 \pi \sigma^2} .$$To actually calculate the integral, first make the replacement $u = \frac{x - x_o}{\sqrt{2 \sigma^2}}$ so that $$\int_{-\infty}^\infty e^{-\frac{(x-x_o)^2}{2\sigma^2}} dx = \sqrt{2 \sigma^2} \int_{-\infty}^\infty e^{-u^2} du.$$Evaluating the integral $du$ is (somewhat counterintuitively) much easier in two dimensions. Note that $$ \int_{-\infty}^\infty e^{-u^2} du = \left [ \int_{-\infty}^\infty e^{-u^2} du \int_{-\infty}^\infty e^{-v^2} dv\right]^\frac{1}{2}, $$since the double integral is simply the single integral squared. But the double-integral is easy to evaluate in polar coordinates:$$ \int_{-\infty}^\infty e^{-u^2} du \int_{-\infty}^\infty e^{-v^2} dv = \int_0^{2\pi} d\theta \int_0^\infty dr \;r e^{-r^2} = 2 \pi \left .\left( - \frac{e^{-r^2}}{2} \right) \right|_0^\infty = \pi.$$The additional factor of $r$ here (the reason we can directly evaluate the integral) comes from the fact that (for infinitesimal displacements) in two dimensions $ dx dy = r dr d\theta $. Finally, this allows us to write the original integral as $$ \int_{-\infty}^\infty e^{-\frac{(x-x_o)^2}{2\sigma^2}} dx = \sqrt{2 \sigma^2} \left [ \int_{-\infty}^\infty e^{-u^2} du \int_{-\infty}^\infty e^{-v^2} dv\right]^\frac{1}{2} = \sqrt{2 \pi \sigma^2 } .$$

Q12

Calculate the Fourier transform$$\int_{-\infty}^\infty e^{i \omega t} e^{-\frac{(t-t_o)^2}{2 \sigma^2}} dt $$

First introduce the change of variables $$ u = \frac{t - t_o}{\sqrt{2 \sigma}} \leftrightarrow \sqrt{2} \sigma u + t_o = t$$to obtain\begin{align} \int_{-\infty}^\infty e^{i \omega t} e^{-\frac{(t-t_o)^2}{2 \sigma^2}} dt &= \int_{-\infty}^\infty e^{i \omega \left( \sqrt{2} \sigma u + t_o\right)} e^{-u^2} \left(\sqrt{2} \sigma du\right) \nonumber \\ &= \sqrt{2} \sigma e^{i \omega t_o} \int_{-\infty}^\infty e^{-u^2 + i \omega \sqrt{2} \sigma u} du .\end{align}Now complete the square:\begin{align} \int_{-\infty}^\infty e^{i \omega t} e^{-\frac{(t-t_o)^2}{2 \sigma^2}} dt &= \sqrt{2} \sigma e^{i \omega t_o} \int_{-\infty}^\infty e^{- \left( u^2 - i \omega \sqrt{2} \sigma u - \frac{\omega^2 \sigma^2}{2} \right) - \frac{\omega^2 \sigma^2 }{2} } du \nonumber \\ &= \sqrt{2}\sigma e^{i \omega t_o} e^{- \frac{\omega^2 \sigma^2}{2} } \int_{-\infty}^\infty e^{- \left( u - i \frac{\omega \sigma}{\sqrt{2}} \right)^2} du\\ &= \sqrt{2} \sigma e^{i \omega t_o} e^{- \frac{\omega^2\sigma^2}{2} } \int_{-\infty}^\infty e^{- u^2} du,\end{align}where in the last line, we have noted that the shift term $i \frac{\sigma \omega}{\sqrt{2}}$ doesn't affect the overall value of the integral. Using the Gaussian integral identity in the last question, we finally obtain $$ \int_{-\infty}^\infty e^{i \omega t} e^{-\frac{(t-t_o)^2}{2 \sigma^2}} dt = \sqrt{2\pi \sigma^2} e^{i \omega t_o} e^{- \frac{\sigma^2 \omega^2}{2} } .$$

Q13

Complete the summation $$\sum_{n} \frac{x^n}{n!}$$

$$\sum_{n} \frac{x^n}{n!} = e^{x} .$$This can be established as a Taylor series for $e^x$:$$e^x = 1 + \left .\frac{d e^x}{dx} \right |_{x=0} x + \left .\frac{d^2 e^x}{dx^2} \right |_{x=0} \frac{x^2}{2!} + \left .\frac{d^3 e^x}{dx^3} \right |_{x=0} \frac{x^3}{3!} + ... . $$

Q14

Complete the summation $$\sum_n x^n $$

$$ \sum_n x^n = \frac{1}{1-x} .$$This can be established either as a Taylor series or by recognizing that for any $n > 0$:\begin{align} \left( 1 - x \right) \left( 1 + x + x^2 + x^3 + ... + x^n \right) = 1 - x^{n+1} . \end{align}Rearranging this equation gives\begin{align} 1 + x + x^2 + x^3 + ... + x^n = \frac{1 - x^{n+1}}{1 - x} ,\end{align}which converges as $n \to \infty$ to$$ \frac{1}{1 - x} = 1 + x + x^2 + ... .$$

Q15

Give the Taylor series to first non-vanishing order around $x=0$:

  • $e^x $
  • $\sqrt{1+x} $
  • $\frac{1}{1-x}$
  • $\sin(x)$
  • $\cos(x)$

  • $e^x \approx 1 + x$
  • $\sqrt{1+x} \approx 1 + \frac{x}{2}$
  • $\frac{1}{1-x} \approx 1 + x$
  • $\sin(x) \approx x$
  • $\cos(x) \approx 1 - x^2 $

Q16

Express $e^{i\theta}$ in terms of $\sin$ and $\cos$ contributions.

$e^{i\theta} = \cos \theta + i \sin \theta$

Q17

Express $\sin \theta $ and $\cos \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$ contributions.

Adding the Euler identities for $\sin \theta$ and $\sin (-\theta) = - \sin \theta$ gives:$$\sin \theta = \frac{e^{i\theta} - e^{-i \theta}}{2i}.$$Adding the Euler identities for $\cos \theta$ and $\cos (-\theta) = \cos \theta$ gives:$$\cos \theta = \frac{e^{i\theta} + e^{-i \theta}}{2}.$$

Q18

Express $\cos \theta \cos \phi$ in terms of $\cos \left( \theta + \phi \right)$ and $\cos \left( \theta - \phi \right)$.

Using the Euler identity to express $\cos \left( \theta + \phi \right)$, we have$$4 \cos \theta \cos \phi = \left( e^{i \theta} + e^{-i \theta} \right) \left( e^{i \phi} + e^{-i \phi} \right) = e^{i \left( \theta + \phi \right)} + e^{-i \left( \theta + \phi \right)} + e^{i \left( \theta - \phi \right)} + e^{-i \left( \theta - \phi \right)} .$$Regrouping terms and dividing through by 4 gives$$ \cos \theta \cos \phi = \frac{1}{2} \left [ \cos \left( \theta + \phi \right) + \cos \left( \theta - \phi \right) \right].$$

Q19

Express $\sin \theta \sin \phi$ in terms of $\cos \left( \theta + \phi \right)$ and $\cos \left( \theta - \phi \right)$.

Using the Euler identity to express $\sin \left( \theta + \phi \right)$, we have$$ \left( 2i \right)^2 \sin \theta \sin \phi = \left( e^{i \theta} - e^{-i \theta} \right) \left( e^{i \phi} - e^{-i \phi} \right) = e^{i \left( \theta + \phi \right)} + e^{-i \left( \theta + \phi \right)} - e^{i \left( \theta - \phi \right)} - e^{-i \left( \theta - \phi \right)} .$$Regrouping terms and dividing through by 4 gives$$ \sin \theta \sin \phi = \frac{1}{2} \left [ \cos \left( \theta - \phi \right) - \cos \left( \theta + \phi \right) \right].$$

Q20

Express $\sin \theta \cos \phi$ in terms of $\sin \left( \theta + \phi \right) $ and $\sin \left( \theta - \phi \right)$.

Expanding using the Euler identity gives$$ 4 i \sin \theta \cos \phi = \left( e^{i \theta} - e^{-i \theta} \right) \left( e^{i \phi} + e^{-i \phi} \right) = e^{i (\theta + \phi) } - e^{-i (\theta + \phi)} + e^{i (\theta - \phi)} - e^{-i (\theta - \phi)} . $$Regrouping terms and dividing by $4i$ gives$$ \sin \theta \cos \phi = \frac{1}{2} \left [ \sin \left( \theta + \phi \right) + \sin \left( \theta - \phi \right) \right] . $$

Q21

Express $\cos\left( \theta + \phi \right) $ and $\sin\left( \theta + \phi \right) $ in terms of $\cos \theta, \cos \phi$, $\sin \theta$, and $\sin \phi$.

From the previous three identities, we have:\begin{align*} 2 \cos \theta \cos \phi &= \cos \left( \theta + \phi \right) + \cos \left( \theta - \phi \right)\\ 2\sin \theta \sin \phi &= \cos \left( \theta - \phi \right) - \cos \left( \theta + \phi \right) \\ 2 \sin \theta \cos \phi &= \sin \left( \theta + \phi \right) + \sin \left( \theta - \phi \right) \\ 2 \cos \theta \sin \phi &= \sin \left( \theta + \phi \right) - \sin \left( \theta - \phi \right) .\end{align*}The difference of the first two equations produces$$\cos\left( \theta + \phi \right) = \cos \theta \cos \phi - \sin \theta \sin \phi .$$The sum of the last two equations produces$$ \sin \left( \theta + \phi \right) = \sin \theta \cos \phi + \cos \theta \sin \phi .$$



Algebra

Q22

What are the defining properties of a mathematical group?

A group is a set of elements $a, b, c, ...$ together with an operation $\circ$ that satisfies the following properties:

  1. Closure: If $a$ and $b$ are in the group then $a \circ b$ is also an element in the group.
  2. Associativity: For any elements $a, b, c$ in the group $( a \circ b) \circ c = a \circ (b \circ c)$
  3. Existence of a unit: There exists an element $e$ in the group such that for any element $a$ in the group $a \circ e = e \circ a = a$.
  4. Existence of an inverse: For every element $a$ in the group, there exists an element $a^{-1}$ in the group such that $a a^{-1} = a^{-1} a = e$.

Q23

What is a symmetry operation?

A symmetry operation is a geometric transformation (e.g., rotation or inversion) that leaves a system unchanged from its starting configuration.

Q24

What is a point group?

A point group is a group of symmetry operations that share a fixed point.

Q25

What are the four basic classes of molecular symmetry operations (other than the identity)?

  1. Reflection: one axis is inverted, e.g. $(x,y,z) \to (-x,y,z)$
  2. Inversion: all three axes are inverted, i.e., $(x,y,z) \to (-x,-y,-z)$
  3. Proper rotation: the system rotates around a fixed axis
  4. Improper rotation: the system rotates around a fixed axis and then is reflected through a plane orthogonal to the rotation axis.

Q26

Give examples of both proper and improper rotations in methane.

The axes that bisect each pair of H atoms in methane (CH$_4$) are both proper and improper rotation axes. If the molecule is rotated by 180$^\text{o}$ around one of these axes, it is brought back to its original configuration (a proper rotation). If it is rotated by 90$^\text{o}$ around the axis and then reflected through the plane orthogonal to it, it is likewise brought back to the original configuration (an improper rotation).

Q27

The figure below illustrates the rotation of a point $(x_0,y_0)$ through an angle $\phi$ in the $(x,y)$ plane. Give an expression for $x_1$ and $y_1$ in terms of the initial coordinates $(x_0, y_0)$ and the angles $\theta$ and $\phi$.\

If we let $L = \sqrt{x_0^2 + y_0^2} = \sqrt{x_1^2 + y_1^2}$, then by definition of the $\sin$ and $\cos$ functions, \begin{align*} x_0 &= L \cos \theta \\ y_0 &= L \sin \theta \\ x_1 &= L \cos\left( \theta + \phi \right) \\ y_1 &= L \sin \left( \theta + \phi \right) .\end{align*}Using the angle-sum identities stated earlier, these can be expanded as\begin{align*} x_1 &= L \cos\left( \theta + \phi \right) \\ &= L \cos \theta \cos \phi - L \sin \theta \sin \phi \\ &= \left( \cos \phi \right ) x_0 - \left( \sin \phi \right) y_0 .\end{align*}and \begin{align*} y_1 &= L \sin \left( \theta + \phi \right) \\ &= L \sin \theta \cos \phi + L \cos \theta \sin \phi \\ &= \left( \sin \phi \right ) x_0 + \left( \cos \phi \right) y_0 .\end{align*}

Q28

Give the 3x3 rotation matrix that corresponds to rotation around the $z$ axis by an angle $\phi$.

Rotation around the $z$ axis corresponds to rotating all $(x,y)$ coordinates in the $xy$ plane and leaving all $z$ coordinates unchanged. According to the last problem, the points thus transform as \begin{align*} x &\to \left( \cos \phi \right) x_0 - \left( \sin \phi \right) y_0 \\ y &\to \left( \sin \phi \right) x_0 + \left( \cos \phi \right) y_0 \\ z &\to z .\end{align*}In matrix form, the new coordinates $(x',y',z')$ are given by$$ \begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x\\y\\z\end{bmatrix} . $$Thus the desired rotation matrix is $${\boldsymbol R}_z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{bmatrix} .$$



Quantum Mechanics

Q29

What is the time-dependent Schrodinger equation?

$$ i \hbar \frac{\partial \psi}{\partial t} = \hat H \psi, $$where $\psi$ is the wavefunction (or wavevector), and $\hat H$ is the Hamiltonian operator, corresponding to the total system energy.

Q30

What is the time-independent Schrodinger equation?

Q31

Why does the time-dependent Schrodinger equation naturally lead to the time-independent Schrodinger equation?

Q32

Express the operators $\hat x$ and $\hat p$ in the position basis.

Q33

Express the operators $\hat x$ and $\hat p$ in the momentum basis.

Q34

Demonstrate the canonical commutation relation from the position-basis representation of $\hat x$ and $\hat p$.

Q35

What is the general form in the position basis for the quantum Hamiltonian of a particle of mass $M$ in a one-dimensional potential $V(x)$?

Q36

Find the eigenfunctions and eigenvalues of the potential $$V(x) = \left \{ \begin{matrix} 0, & -\frac{L}{2} \leq x \leq \frac{L}{2} \\\infty, & \text{otherwise.} \end{matrix} \right. $$

\question{Find the eigenfunctions and eigenvalues of the potential $$V(x) = \left \{ \begin{matrix} 0, & -\frac{L}{2} \leq x \leq \frac{L}{2} \\\infty, & \text{otherwise.} \end{matrix} \right. $$}

Q37

Write the harmonic oscillator Hamiltonian (with potential $V(x) = \frac{m \omega^2 x^2}{2}$) in terms of

  1. $\hat x$ and $\hat p$ operators in the position basis,
  2. mass-weighted $\hat Q$ and $\hat P$ operators, and
  3. raising and lowering operators $\hat a$ and $\hat a^\dagger$ .

Q38

Calculate the commutator $\left [ \hat a , a^\dagger \right]$.

Q39

Calculate the commutator $\left [ \hat H , a^\dagger \right]$

Q40

Calculate the commutator $\left [ \hat H , a \right]$

Q41

Show that if $\phi$ is an eigenfunction of the harmonic Hamiltonian $\hat H$ with eigenvalue $\lambda$ then $\hat a \phi$ is an eigenfunction of $\hat H$ with eigenvalue $\lambda - \hbar \omega$.

Q42

Show that if $\phi$ is an eigenfunction of the harmonic Hamiltonian $\hat H$ with eigenvalue $\lambda$ then $\hat a^\dagger \phi$ is an eigenfunction of $\hat H$ with eigenvalue $\lambda + \hbar \omega$.

Q43

If $\phi$ is a normalized eigenfunction of the harmonic Hamiltonian $\hat H$, what is $\| \hat a \phi \|^2$?

Q44

If $\phi$ is a normalized eigenfunction of the harmonic Hamiltonian $\hat H$, what is $\| \hat a^\dagger \phi \|^2$?

Q45

Derive a lower bound on the eigenvalues of the harmonic oscillator Hamiltonian. What is the smallest eigenvalue $\lambda_o$ of $\hat H$? How do you know that this is a valid eigenvalue?

Q46

Use the position-basis representation of $\hat x$, $\hat p$, and $\hat a$ to find the ground-state eigenfunction $\phi_0$ of the harmonic oscillator.

Q47

Consider the two-dimensional harmonic oscillator potential $$V(x_1,x_2) = \frac{m \omega_1^2 x_1^2}{2} + v x_1 x_2 + \frac{m \omega_2^2 x_2^2}{2} .$$ What is the Hessian for this system? What are its normal-mode frequencies?

Q48

What does the ``ket'' $\left | \psi\right \rangle$ represent in wave mechanics? What about in matrix mechanics?

Q49

What does the ``bra'' $\left \langle \psi\right |$ represent in wave mechanics? What about in matrix mechanics?

Q50

How is the adjoint of an operator defined?

Q51

How is a Hermitian operator defined?

Q52

Prove that the eigenvalues of a Hermitian operator are real.

Q53

Prove that non-degenerate eigenvectors of a Hermitian operator are orthogonal.

Q54

Derive the variational principle, i.e., show that for any Hermitian operator $\hat A$ with a lower bound $\lambda_o$ on its eigenvalues, $$ \left \langle \psi \left |\hat A \right |\psi\right \rangle \geq \lambda_o.$$

Q55

Derive the quantum Adiabatic Theorem.

Q56

What (Schrodinger-like) equation defines the time-evolution operator $\hat U(t,t_o)$?

Q57

What form does $\hat U(t,t_o)$ take under a static (time-indepdendent) Hamiltonian?

Q58

Write down an expression for the density matrix of a system of $N$ independent particles, each with wavefunction $\left | \psi_n\right \rangle$.

Q59

How do you calculate the expectation value $\left \langle A \right \rangle $ for an operator $\hat A$ from the density matrix $\hat \rho$?

Q60

Show that the trace of an operator is independent of the basis used to evaluate it.

Q61

What is the quantum Liouville equation?

Q62

Derive the quantum Liouville equation from the time-dependent Schrodinger equation.

Q63

Show that the trace is invariant under cyclic permutations.

Q64

Consider a system with Hamiltonian $\hat H = \hat H_\text{o} + \hat V$, where $\hat V$ can be considered a small perturbation. How is the interaction-picture density matrix $\hat \rho_\text{I}$ defined for this system?

Q65

Consider a system with Hamiltonian $\hat H = \hat H_\text{o} + \hat V$, where $\hat V$ can be considered a small perturbation. What is the Liouville equation for the interaction-picture density matrix $\hat \rho_\text{I}$ for this system?

Q66

Consider a system with Hamiltonian $\hat H = \hat H_\text{o} + \hat V$, where $\hat V$ can be considered a small perturbation. Derive the Dyson series expansion for $\hat \rho_\text{I}(t)$ by formally integrating the Liouville equation for $\hat \rho_\text{I}$ and repeatedly plugging the answer into itself.



Thermodynamics and Statistical Mechanics

Q67

What is the First Law of Thermodynamics? (Include a statement of the law as an equation).

Q68

Write down the differential for $dW$ in a system with only PV work.

Q69

What is the thermodynamic definition of entropy?

Q70

Write down a differential statement of the First Law of thermodynamics for a system with only PV work.

Q71

What does the differential statement of the First Law tell you about the physical interpretation of $P$ and $T$?

Q72

What is the Second Law of Thermodynamics?

Q73

What does a heat capacity tell you? What is the difference between $C_\text{P}$ and $C_\text{V}$?

Q74

Give an expression for the energy of a monatomic ideal gas in terms of macroscopic parameters.

Q75

What is the equation of state for an ideal gas?

Q76

What do the following terms mean in the context of thermodynamics?

  1. Adiabatic
  2. Isothermal
  3. Isobaric
  4. Isochoric

Q77

What is $C_\text{V}$ for an ideal gas? What is $C_\text{P}$?

Q78

Under what circumstances is Entropy maximized at equilibrium? (Use the Second Law to prove this.)

Q79

How is enthalpy defined? What is its physical meaning?

Q80

Under what circumstances is the Enthalpy maximized at equilibrium? (Use the Second Law to prove this.)

Q81

What is the definition of the Gibbs Free Energy? What is its physical meaning?

Q82

Under what circumstances is the Gibbs Free Energy maximized at equilibrium? (Use the Second Law to prove this.)

Q83

What is the definition of the Helmholtz Free Energy? What is its physical meaning?

Q84

Under what circumstances is the Helmholtz Free Energy maximized at equilibrium? (Use the Second Law to prove this.)

Q85

What variables are held constant in each of the following?

  1. Microcanonical ensemble
  2. Canonical ensemble
  3. Gibbs ensemble
  4. Grand canonical ensemble

Q86

Give an equation for the information entropy $s\left( \{ p_\mu \} \right)$ of a discrete probability distribution $\{ p_\mu \}$. What does $s\left( \{ p_\mu \} \right)$ represent intuitively?

Q87

What is the relationship between information entropy and thermodynamic entropy?

Q88

How are microstate probabilities $p_\mu$ assigned in the microcanonical ensemble?

Q89

How are microstate probabilities $p_\mu$ assigned in the canonical ensemble?

Q90

How are microstate probabilities $p_\mu$ assigned in the Gibbs ensemble?

Q91

How are microstate probabilities $p_\mu$ assigned in the Grand canonical ensemble?



Spectroscopy

Q92

What is the field-dipole Hamiltonian for light-matter interactions?

Q93

Consider a system with a static Hamiltonian $\hat H_\text{o}$ perturbed by the field-dipole interaction with the electric field that is zero for $t \leq 0$. What is the first-order correction $\psi_\text{I}^{(1)}(t)$ to the interaction-picture representation of the wavefunction for $t > 0$?

Q94

Consider a system with a static Hamiltonian $\hat H_\text{o}$ perturbed by the field-dipole interaction with the electric field that is zero for $t \leq 0$. What is the first-order correction $\hat \rho_\text{I}^{(1)}(t)$ to the interaction-picture representation of the density matrix for $t > 0$?

Q95

Give an expression for the linear polarization $\vec P^{(1)}(t)$ of an isotropic material in terms of its linear response function $R^{(1)}(\tau)$.

Q96

Give an expression for the linear response tensor $R_{\alpha\beta}^{(1)}(\tau)$ as an autocorrelation function.

Q97

What is the relationship between the linear response function $R^{(1)}(\tau)$ for an isotropic material and the linear susceptibility $\chi^{(1)}(\omega)$

Q98

What is the relationship between the linear linear susceptibility $\chi^{(1)}(\omega)$ for an isotropic material and the permittivity $\varepsilon(\omega)$?

Q99

What is the relationship between the permittivity $\varepsilon(\omega)$ and the refractive index $n(\omega)$?

Q100

What is the relationship between the permittivity $\varepsilon(\omega)$ and the extinction coefficient $\kappa(\omega)$?

Q101

What is the (a) exact and (b) low-OD approximate relationship between $\kappa(\omega)$ and $\chi^{(1)}(\omega)$?

Q102

What is the difference between homogeneous and inhomogeneous broadening? What is meant by ``static disorder''?

Q103

What is the difference between dissipation and dephasing?

Q104

What is motional narrowing? What sets the timescale upon which motional narrowing occurs?

Q105

Roughly how many cm$^{-1}$ are there per nm in the vicinity of each of the following?

  1. 700 nm:
  2. 500 nm:
  3. 300 nm:

  1. 700 nm: 20 cm$^{-1}$
  2. 500 nm: 40 cm$^{-1}$
  3. 300 nm: 110 cm$^{-1}$

Q106

How many of each of the following unts are there per cm$^{-1}$?

  1. meV:
  2. GHz:
  3. THz:

  1. meV: 0.124
  2. GHz: 30
  3. THz: 0.03

Q107

How many cm$^{-1}$ are there

  1. per THz?
  2. per meV?

  1. per THz? 33.3
  2. per meV? 8

Q108

What is the oscillation period in vacuum of a

  1. 9 $\mu$m light wave?
  2. 6 $\mu$m light wave?
  3. 3 $\mu$m light wave?
  4. 900 nm light wave?
  5. 600 nm light wave?
  6. 300 nm light wave?

  1. 9 $\mu$m light wave? 30 fs
  2. 6 $\mu$m light wave? 20 fs
  3. 3 $\mu$m light wave? 10 fs
  4. 900 nm light wave? 3 fs
  5. 600 nm light wave? 2 fs
  6. 300 nm light wave? 1 fs

Out[32]:
0
In [ ]: